Google BigQuery integrates seamlessly with Web Analytics data compared to the Azure cloud. Google BigQuery integrates natively with different digital media platforms compared to Azure and AWs.
One of the most important aspects while working with data warehousing solutions and analytics is the ability to handle large datasets. Google BigQuery is the best in business for that particular aspect. It is ridiculously fast while handling large data sets. Another aspect where it is well suited is the ability to integrate it with data visualization tools like Data Studio. It is fast, easy to use, and very reliable. The only aspect where I feel it is less appropriate where you have to pay more of inefficient scripts and that can hamper the growth of the company a bit.
Your upcoming app can be built faster on a fully managed SQL database and can be moved into Azure with a few to no application code changes. Flexible and responsive server less computing and Hyperscale storage can cope with your changing requirements and one of the main benefits is the reduction in costs, which is noticeable.
Maintenance is always an issue, so using a cloud solution saves a lot of trouble.
On premise solutions always suffer from fragmented implementations here and there, where several "dba's" keep track of security and maintenance. With a cloud database it's much easier to keep a central overview.
Security options in SQL database are next level... data masking, hiding sensitive data where always neglected on premise, whereas you'll get this automatically in the cloud.
One issue with Google Cloud Storage is its price. For one to have that premium Google Cloud Storage, for the purpose of massive storage, he/she must have adequate cash. Otherwise, Google Cloud Storage is a safe and perfect online storage platform.
The only thing that can come to mind that would be annoying with this software was that sometimes when trying to share files on the Cloud with coworkers, it would just not share at all, or there would be a massive delay in when I shared them and when they received them. Other than that though, everything is perfect with this.
One needs to be aware that some T-SQL features are simply not available.
The programmatic access to server, trace flags, hardware from within Azure SQL Database is taken away (for a good reason).
No SQL Agent so your jobs need to be orchestrated differently.
The maximum concurrent logins maybe an unexpected problem.
Sudden disconnects.
The developers and admin must study the capacity and tier usage limits https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits otherwise some errors or even transaction aborts never seen before can occur.
Only one Latin Collation choice.
There is no way to debug T-SQL ( a big drawback in my point of view).
web UI is easy and convenient. Many RDBMS clients such as aqua data studio, Dbeaver data grid, and others connect. Range of well-documented APIs available. The range of features keeps expanding, increasing similar features to traditional RDBMS such as Oracle and DB2
It’s Google, they’re big and well organized, the documentation is abundant and the scalability is amazing. The UX is good too, considering it’s a professional tool expected to be used by people with a specific technical background. Overall, it makes me feels good and secure that we know where to store the data, how to use that data and that the data is handled with utmost security and performance practices.
We give the support a high rating simply because every time we've had issues or questions, representatives were in contact with us quickly. Without fail, our issues/questions were handled in a timely matter. That kind of response is integral when client data integrity and availability is in question. There is also a wealth of documentation for resolving issues on your own.
Spinning up, provisioning, maintaining and debugging a Hadoop solution can be non-trivial, painful. I'm talking about both GCE based or HDInsight clusters. It requires expertise (+ employee hire, costs). With BigQuery if someone has a good SQL knowledge (and maybe a little programming), can already start to test and develop. All of the infrastructure and platform services are taken care of. Google BigQuery is a magnitudes simpler to use than Hadoop, but you have to evaluate the costs. BigQuery billing is dependent on your data size and how much data your query touches.
We moved away from Oracle and NoSQL because we had been so reliant on them for the last 25 years, the pricing was too much and we were looking for a way to cut the cord. Snowflake is just too up in the air, feels like it is soon to be just another line item to add to your Azure subscription. Azure was just priced right, easy to migrate to and plenty of resources to hire to support/maintain it. Very easy to learn, too.
Google Support has kindly provide individual support and consultants to assist with the integration work. In the circumstance where the consultants are not present to support with the work, Google Support Helpline will always be available to answer to the queries without having to wait for more than 3 days.
Google BigQuery has had enormous impact in terms of ROI to our business, as it has allowed us to ease our dependence on our physical servers, which we pay for monthly from another hosting service. We have been able to run multiple enterprise scale data processing applications with almost no investment
Since our business is highly client focused, Google Cloud Platform, and BigQuery specifically, has allowed us to get very granular in how our usage should be attributed to different projects, clients, and teams.
Plain and simple, I believe the meager investments that we have made in Google BigQuery have paid themselves back hundreds of times over.