Google Cloud AI vs. IBM watsonx.ai

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Google Cloud AI
Score 8.2 out of 10
N/A
Google Cloud AI provides modern machine learning services, with pre-trained models and a service to generate tailored models.N/A
IBM watsonx.ai
Score 8.7 out of 10
N/A
Watsonx.ai is part of the IBM watsonx platform that brings together new generative AI capabilities, powered by foundation models, and traditional machine learning into a studio spanning the AI lifecycle. Watsonx.ai can be used to train, validate, tune, and deploy generative AI, foundation models, and machine learning capabilities, and build AI applications with less time and data.
$0
Pricing
Google Cloud AIIBM watsonx.ai
Editions & Modules
No answers on this topic
Free Trial
$0
ML functionality (20 CUH limit /month); Inferencing (50,000 tokens / month)
Standard
$1,050
Monthly tier fee; additional usage based fees
Essentials
Contact Sales
Usage based fees
Offerings
Pricing Offerings
Google Cloud AIIBM watsonx.ai
Free Trial
NoYes
Free/Freemium Version
NoYes
Premium Consulting/Integration Services
NoYes
Entry-level Setup FeeNo setup feeNo setup fee
Additional DetailsPricing for watsonx.ai includes: model inference per 1000 tokens and ML tools and ML runtimes based on capacity unit hours.
More Pricing Information
Community Pulse
Google Cloud AIIBM watsonx.ai
Considered Both Products
Google Cloud AI

No answer on this topic

IBM watsonx.ai
Chose IBM watsonx.ai
IBM watsonx.ai is more enterprise oriented providing more options regarding on-premises setup and other compliance issues. Better suited for the corporate world.
Best Alternatives
Google Cloud AIIBM watsonx.ai
Small Businesses
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Medium-sized Companies
Posit
Posit
Score 10.0 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Enterprises
Posit
Posit
Score 10.0 out of 10
Dataiku
Dataiku
Score 8.2 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Google Cloud AIIBM watsonx.ai
Likelihood to Recommend
8.0
(7 ratings)
9.0
(33 ratings)
Likelihood to Renew
10.0
(1 ratings)
6.4
(1 ratings)
Usability
8.0
(2 ratings)
7.9
(6 ratings)
Support Rating
7.3
(3 ratings)
-
(0 ratings)
Implementation Rating
10.0
(1 ratings)
-
(0 ratings)
Ease of integration
-
(0 ratings)
6.4
(2 ratings)
Product Scalability
-
(0 ratings)
9.1
(1 ratings)
User Testimonials
Google Cloud AIIBM watsonx.ai
Likelihood to Recommend
Google
Google Cloud AI is a wonderful product for companies that are looking to offset AI and ML processing power to cloud APIs, and specific Machine Learning use cases to APIs as well. For companies that are looking for very specific, customized ML capabilities that require lots of fine-tuning, it may be better to do this sort of processing through open-source libraries locally, to offset the costs that your company might incur through this API usage.
Read full review
IBM
I have built a code accelerator tool for one of the IBM product implementation. Although there was a heavy lifting at the start to train the model on specifics of the packaged solution library and ways of working; the efficacy of the model is astounding. Having said that, watsonx.ai is very well suited for customer service automation, healthcare data analytics, financial fraud detection, and sentiment analysis kind of projects. The Watsonx.ai look and feel is little confusing but I understand over a period of time , it will improve dramatically as well. I do feel that Watsonx.ai has certain limitations from cross-platform deployment flexibility. If an organization is deeply invested in a multi-cloud environment, Watson's integration on other cloud platforms may not be seamless comported to other AI platforms.
Read full review
Pros
Google
  • good conversion from the voice to the text
  • speed in the conversion from voice to text
  • time-saving in the conversion activity
  • analysis of the results of the conversion in real time
Read full review
IBM
  • It allows specialists to apply several base models for specific subtasks in the field of NLP.
  • Gives the availability of many models developed for AI enhancement for different solutions.
  • Has incorporated functionality for data governance and security to support access to AI tools by multiple users.
Read full review
Cons
Google
  • Some of the build in/supported AI modules that can be deployed, for example Tensorflow, do not have up-to-date documentation so what is actually implemented in the latest rev is not what is mentioned in the documentation, resulting in a lot of debugging time.
  • Customization of existing modules and libraries is harder and it does need time and experience to learn.
  • Google Cloud AI can do a better job in providing better support for Python and other coding languages.
Read full review
IBM
  • IBM watsonx.ai is expensive than other platforms.
  • Limited integraions though it has many but still some tools integrations not there for medical usecase
  • Its little difficult to learn as right now not many open reseouces
  • Community is not that strong to get any answer
Read full review
Likelihood to Renew
Google
We are extremely satisfied with the impact that this tool has made on our organization since we have practically moved from crawling to walking in the process of generating information for our main task to investigate in the field through interviews. With the audio to text translation tool there is a difference from heaven to earth in the time of feeding our internal data.
Read full review
IBM
I still don't have enough experience, but i have seen a lot of demos and i have made some real world scenarios and so far so long every thing looks fine. I was at IBM Think 2025 and IBM TechXchange 2025 and the labs were really usefull and simple to understand.
Read full review
Usability
Google
I give 8 because although it´s a tool I really enjoy working with, I think Google Cloud AI's impact is just starting, therefore I can visualize a lot/space of improvements in this tool. As an example the application of AI in international environments with different languages is a good example of that space/room to improve.
Read full review
IBM
I needed some time to understand the different parts of the web UI. It was slightly overwhelming in the beginning. However, after some time, it made sense, and I like the UI now. In terms of functionality, there are many useful features that make your life easy, like jumping to a section and giving me a deployment space to deploy my models easily.
Read full review
Support Rating
Google
Every rep has been nice and helpful whenever I call for help. One of the systems froze and wouldn't start back up and with the help of our assigned rep we got everything back up in a timely manner. This helped us not lose customers and money.
Read full review
IBM
I still don't have enough experience, but i have seen a lot of demos and i have made some real world scenarios and so far so long every thing looks fine. I was at IBM Think 2025 and IBM TechXchange 2025 and the labs were really usefull and simple to understand.
Read full review
Implementation Rating
Google
In fact, you only need the basic tech knowledge to do a Google search. You need to know if your organization requires it or not,. our organization required it. And that is why we acquired it and solved a need that we had been suffering from. This is part of the modernization of an organization and part of its growth as a company.
Read full review
IBM
No answers on this topic
Alternatives Considered
Google
These are basic tools although useful, you can't simply ignore them or say they are not good. These tools also have their own values. But, Yes, Google is an advanced one, A king in the field of offering a wide range of tools, quality, speed, easy to use, automation, prebuild, and cost-effective make them a leader and differentiate them from others.
Read full review
IBM
IBM watsonx.ai has been far superior to that of Chat GPT AI. the UI elements prompt responses and overall execution of the AI was much better and more accurate compared to the competition. I can not recommend using this platform enough. Great job IBM. I hope the team behind this project continues to grow and prosper.
Read full review
Scalability
Google
No answers on this topic
IBM
I still don't have enough experience, but i have seen a lot of demos and i have made some real world scenarios and so far so long every thing looks fine. I was at IBM Think 2025 and IBM TechXchange 2025 and the labs were really usefull and simple to understand.
Read full review
Return on Investment
Google
  • Artificial intelligence and automation seems 'free' and draws the organization in, without seeming to spend a lot of funds. A positive impact, but who is actually tracking the cost?
  • We want our employees to use it, but many resist technology or are scared of it, so we need a way to make them feel more comfortable with the AI.
  • The ROI seems positive since we are full in with Google, and the tools come along with the functionality.
Read full review
IBM
  • Time saving to set up the infrastructure - without watsonx.ai we would have had to set up everything individually
  • The first point translates directly into cost savings
  • The compliance aspect was a game changer for us and provided us with the confidence to focus all our efforts only on IBM watsonx.ai
Read full review
ScreenShots

IBM watsonx.ai Screenshots

Screenshot of the foundation models available in watsonx.ai. Clients have access to IBM selected open source models from Hugging Face, as well as other third-party models, and a family of IBM-developed foundation models of different sizes and architectures.Screenshot of the Prompt Lab in watsonx.ai, where AI builders can work with foundation models and build prompts using prompt engineering techniques in watsonx.ai to support a range of Natural Language Processing (NLP) type tasks.Screenshot of the Tuning Studio in watsonx.ai, where AI builders can tune foundation models with labeled data for better performance and accuracy.Screenshot of the data science toolkit in watsonx.ai where AI builders can build machine learning models automatically with model training, development, visual modeling, and synthetic data generation.