Google Cloud AI provides modern machine learning services, with pre-trained models and a service to generate tailored models.
N/A
KNIME Analytics Platform
Score 7.9 out of 10
N/A
KNIME enables users to analyze, upskill, and scale data science without any coding. The platform that lets users blend, transform, model and visualize data, deploy and monitor analytical models, and share insights organization-wide with data apps and services.
$0
per month
Pricing
Google Cloud AI
KNIME Analytics Platform
Editions & Modules
No answers on this topic
KNIME Community Hub Personal Plan
$0
KNIME Analytics Platform
$0
KNIME Community Hub Team Plan
€99
per month 3 users
KNIME Business Hub
From €35,000
per year
Offerings
Pricing Offerings
Google Cloud AI
KNIME Analytics Platform
Free Trial
No
No
Free/Freemium Version
No
Yes
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Google Cloud AI
KNIME Analytics Platform
Features
Google Cloud AI
KNIME Analytics Platform
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Google Cloud AI
-
Ratings
KNIME Analytics Platform
9.2
19 Ratings
9% above category average
Connect to Multiple Data Sources
00 Ratings
9.619 Ratings
Extend Existing Data Sources
00 Ratings
10.010 Ratings
Automatic Data Format Detection
00 Ratings
9.119 Ratings
MDM Integration
00 Ratings
7.98 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Google Cloud AI
-
Ratings
KNIME Analytics Platform
8.1
18 Ratings
3% below category average
Visualization
00 Ratings
8.018 Ratings
Interactive Data Analysis
00 Ratings
8.118 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Google Cloud AI
-
Ratings
KNIME Analytics Platform
8.3
19 Ratings
2% above category average
Interactive Data Cleaning and Enrichment
00 Ratings
9.019 Ratings
Data Transformations
00 Ratings
9.519 Ratings
Data Encryption
00 Ratings
7.47 Ratings
Built-in Processors
00 Ratings
7.48 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Google Cloud AI
-
Ratings
KNIME Analytics Platform
8.0
18 Ratings
5% below category average
Multiple Model Development Languages and Tools
00 Ratings
9.517 Ratings
Automated Machine Learning
00 Ratings
8.217 Ratings
Single platform for multiple model development
00 Ratings
9.318 Ratings
Self-Service Model Delivery
00 Ratings
5.08 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Google Cloud AI is a wonderful product for companies that are looking to offset AI and ML processing power to cloud APIs, and specific Machine Learning use cases to APIs as well. For companies that are looking for very specific, customized ML capabilities that require lots of fine-tuning, it may be better to do this sort of processing through open-source libraries locally, to offset the costs that your company might incur through this API usage.
KNIME Analytics Platform is excellent for people who are finding Excel frustrating, this can be due to errors creeping in due to manual changes or simply that there are too many calculations which causes the system to slow down and crash. This is especially true for regular reporting where a KNIME Analytics Platform workflow can pull in the most recent data, process it and provide the necessary output in one click. I find KNIME Analytics Platform especially useful when talking with audiences who are intimidated by code. KNIME Analytics Platform allows us to discuss exactly how data is processed and an analysis takes place at an abstracted level where non-technical users are happy to think and communicate which is often essential when they are subject matter experts whom you need for guidance. For experienced programmers KNIME Analytics Platform is a double-edged sword. Often programmers wish to write their own code because they are more efficient working that way and are constrained by having to think and implement work in nodes. However, those constraints forcing development in a "KNIME way" are useful when working in teams and for maintenance compared to some programmers' idiosyncratic styles.
Some of the build in/supported AI modules that can be deployed, for example Tensorflow, do not have up-to-date documentation so what is actually implemented in the latest rev is not what is mentioned in the documentation, resulting in a lot of debugging time.
Customization of existing modules and libraries is harder and it does need time and experience to learn.
Google Cloud AI can do a better job in providing better support for Python and other coding languages.
We are extremely satisfied with the impact that this tool has made on our organization since we have practically moved from crawling to walking in the process of generating information for our main task to investigate in the field through interviews. With the audio to text translation tool there is a difference from heaven to earth in the time of feeding our internal data.
We are happy with Knime product and their support. Knime AP is versatile product and even can execute Python scripts if needed. It also supports R execution as well; however, it is not being used at our end
I give 8 because although it´s a tool I really enjoy working with, I think Google Cloud AI's impact is just starting, therefore I can visualize a lot/space of improvements in this tool. As an example the application of AI in international environments with different languages is a good example of that space/room to improve.
KNIME Analytics Platform offers a great tradeoff between intuitiveness and simplicity of the user interface and almost limitless flexibility. There are tools that are even easier to adopt by someone new to analytics, but none that would provide the scalability of KNIME when the user skills and application complexity grows
Every rep has been nice and helpful whenever I call for help. One of the systems froze and wouldn't start back up and with the help of our assigned rep we got everything back up in a timely manner. This helped us not lose customers and money.
KNIME's HQ is in Europe, which makes it hard for US companies to get customer service in time and on time. Their customer service also takes on average 1 to 2 weeks to follow up with your request. KNIME's documentation is also helpful but it does not provide you all the answers you need some of the time.
In fact, you only need the basic tech knowledge to do a Google search. You need to know if your organization requires it or not,. our organization required it. And that is why we acquired it and solved a need that we had been suffering from. This is part of the modernization of an organization and part of its growth as a company.
KNIME Analytics Platform is easy to install on any Windows, Mac or Linux machine. The KNIME Server product that is currently being replaced by the KNIME Business Hub comes as multiple layers of software and it took us some time to set up the system right for stability. This was made harder by KNIME staff's deeper expertise in setting up the Server in Linux rather than Windows environment. The KNIME Business Hub promises to have a simpler architecture, although currently there is no visibility of a Windows version of the product.
These are basic tools although useful, you can't simply ignore them or say they are not good. These tools also have their own values. But, Yes, Google is an advanced one, A king in the field of offering a wide range of tools, quality, speed, easy to use, automation, prebuild, and cost-effective make them a leader and differentiate them from others.
Having used both the Alteryx and [KNIME Analytics] I can definitely feel the ease of using the software of Alteryx. The [KNIME Analytics] on the other hand isn't that great but is 90% of what Alteryx can do along with how much ease it can do. Having said that, the 90% functionality and UI at no cost would be enough for me to quit using Alteryx and move towards [KNIME Analytics].
Artificial intelligence and automation seems 'free' and draws the organization in, without seeming to spend a lot of funds. A positive impact, but who is actually tracking the cost?
We want our employees to use it, but many resist technology or are scared of it, so we need a way to make them feel more comfortable with the AI.
The ROI seems positive since we are full in with Google, and the tools come along with the functionality.
It is suited for data mining or machine learning work but If we're looking for advanced stat methods such as mixed effects linear/logistics models, that needs to be run through an R node.
Thinking of our peers with an advanced visualization techniques requirement, it is a lagging product.