IBM InfoSphere Information Server vs. IBM Watson Studio on Cloud Pak for Data

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
IBM InfoSphere Information Server
Score 8.0 out of 10
N/A
IBM InfoSphere Information Server is a data integration platform used to understand, cleanse, monitor and transform data. The offerings provide massively parallel processing (MPP) capabilities.N/A
IBM Watson Studio
Score 9.9 out of 10
N/A
IBM Watson Studio enables users to build, run and manage AI models, and optimize decisions at scale across any cloud. IBM Watson Studio enables users can operationalize AI anywhere as part of IBM Cloud Pak® for Data, the IBM data and AI platform. The vendor states the solution simplifies AI lifecycle management and accelerates time to value with an open, flexible multicloud architecture.N/A
Pricing
IBM InfoSphere Information ServerIBM Watson Studio on Cloud Pak for Data
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
IBM InfoSphere Information ServerIBM Watson Studio
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
IBM InfoSphere Information ServerIBM Watson Studio on Cloud Pak for Data
Considered Both Products
IBM InfoSphere Information Server

No answer on this topic

IBM Watson Studio
Chose IBM Watson Studio on Cloud Pak for Data
I don't really see other tools that I also use such as R-Studio, eclipse, local Jupyter notebooks, PyCharm, and even Jupyter Labs as being direct competitors to DSx. Mainly because even with things like git integration, more focused on the seem to be on local development as …
Features
IBM InfoSphere Information ServerIBM Watson Studio on Cloud Pak for Data
Data Source Connection
Comparison of Data Source Connection features of Product A and Product B
IBM InfoSphere Information Server
8.7
4 Ratings
6% above category average
IBM Watson Studio on Cloud Pak for Data
-
Ratings
Connect to traditional data sources9.94 Ratings00 Ratings
Connecto to Big Data and NoSQL7.54 Ratings00 Ratings
Data Transformations
Comparison of Data Transformations features of Product A and Product B
IBM InfoSphere Information Server
9.6
4 Ratings
18% above category average
IBM Watson Studio on Cloud Pak for Data
-
Ratings
Simple transformations10.04 Ratings00 Ratings
Complex transformations9.24 Ratings00 Ratings
Data Modeling
Comparison of Data Modeling features of Product A and Product B
IBM InfoSphere Information Server
8.0
4 Ratings
2% above category average
IBM Watson Studio on Cloud Pak for Data
-
Ratings
Data model creation8.72 Ratings00 Ratings
Metadata management7.74 Ratings00 Ratings
Business rules and workflow8.44 Ratings00 Ratings
Collaboration8.04 Ratings00 Ratings
Testing and debugging7.14 Ratings00 Ratings
Data Governance
Comparison of Data Governance features of Product A and Product B
IBM InfoSphere Information Server
9.7
4 Ratings
21% above category average
IBM Watson Studio on Cloud Pak for Data
-
Ratings
Integration with data quality tools10.04 Ratings00 Ratings
Integration with MDM tools9.53 Ratings00 Ratings
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
IBM InfoSphere Information Server
-
Ratings
IBM Watson Studio on Cloud Pak for Data
8.1
22 Ratings
3% below category average
Connect to Multiple Data Sources00 Ratings8.022 Ratings
Extend Existing Data Sources00 Ratings8.022 Ratings
Automatic Data Format Detection00 Ratings10.021 Ratings
MDM Integration00 Ratings6.414 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
IBM InfoSphere Information Server
-
Ratings
IBM Watson Studio on Cloud Pak for Data
10.0
22 Ratings
18% above category average
Visualization00 Ratings10.022 Ratings
Interactive Data Analysis00 Ratings10.022 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
IBM InfoSphere Information Server
-
Ratings
IBM Watson Studio on Cloud Pak for Data
9.5
22 Ratings
16% above category average
Interactive Data Cleaning and Enrichment00 Ratings10.022 Ratings
Data Transformations00 Ratings10.021 Ratings
Data Encryption00 Ratings8.020 Ratings
Built-in Processors00 Ratings10.021 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
IBM InfoSphere Information Server
-
Ratings
IBM Watson Studio on Cloud Pak for Data
9.5
22 Ratings
12% above category average
Multiple Model Development Languages and Tools00 Ratings10.021 Ratings
Automated Machine Learning00 Ratings10.022 Ratings
Single platform for multiple model development00 Ratings10.022 Ratings
Self-Service Model Delivery00 Ratings8.020 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
IBM InfoSphere Information Server
-
Ratings
IBM Watson Studio on Cloud Pak for Data
8.0
22 Ratings
6% below category average
Flexible Model Publishing Options00 Ratings9.022 Ratings
Security, Governance, and Cost Controls00 Ratings7.022 Ratings
Best Alternatives
IBM InfoSphere Information ServerIBM Watson Studio on Cloud Pak for Data
Small Businesses
Skyvia
Skyvia
Score 10.0 out of 10
Jupyter Notebook
Jupyter Notebook
Score 8.5 out of 10
Medium-sized Companies
dbt
dbt
Score 8.9 out of 10
Posit
Posit
Score 10.0 out of 10
Enterprises
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Posit
Posit
Score 10.0 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
IBM InfoSphere Information ServerIBM Watson Studio on Cloud Pak for Data
Likelihood to Recommend
8.9
(5 ratings)
8.0
(65 ratings)
Likelihood to Renew
8.0
(1 ratings)
8.2
(1 ratings)
Usability
-
(0 ratings)
9.6
(2 ratings)
Availability
-
(0 ratings)
8.2
(1 ratings)
Performance
-
(0 ratings)
8.2
(1 ratings)
Support Rating
-
(0 ratings)
8.2
(1 ratings)
In-Person Training
-
(0 ratings)
8.2
(1 ratings)
Online Training
-
(0 ratings)
8.2
(1 ratings)
Implementation Rating
-
(0 ratings)
7.3
(1 ratings)
Product Scalability
-
(0 ratings)
8.2
(1 ratings)
Vendor post-sale
-
(0 ratings)
7.3
(1 ratings)
Vendor pre-sale
-
(0 ratings)
8.2
(1 ratings)
User Testimonials
IBM InfoSphere Information ServerIBM Watson Studio on Cloud Pak for Data
Likelihood to Recommend
IBM
Information Server is extremely useful to replace manual developments that require a lot of coding effort. It significantly increases the productivity of the initial development and the future maintenance of the processes since it has a visual development environment with self-documentation.
Read full review
IBM
It has a lot of features that are good for teams working on large-scale projects and continuously developing and reiterating their data project models. Really helpful when dealing with large data. It is a kind of one-stop solution for all data science tasks like visualization, cleaning, analyzing data, and developing models but small teams might find a lot of features unuseful.
Read full review
Pros
IBM
  • IIS best for ETL ,not ELT , and many and diffrent source systems.
  • It also can process big data , unstuctured data
  • It is not only DWH , you can use infosphere for analys and see the bigger architecture of your OLTP systems
Read full review
IBM
  • Integration of IBM Watson APIs such as speech to text, image recognition, personality insights, etc.
  • SPSS modeler and neural network model provide no-code environments for data scientists to build pipelines quickly.
  • Enforced best-practices set up POCs for deployment in production with a minimum of re-work.
  • Estimator validation lets data scientists test and prove different models.
Read full review
Cons
IBM
  • I would be nice to have a new web development environment for DataStage.
  • Connectivity Packs such as Pack for SAP Application are a little pricey.
  • It is confusing for new developers the possibility of developing jobs using different execution engines such as Parallel or Server.
Read full review
IBM
  • The cost is steep and so only companies with resources can afford it
  • It will be nice to have Chinese versions so that Chinese engineers can also use it easily
  • It takes a while to learn how to input different kinds of skin defects for detection
Read full review
Likelihood to Renew
IBM
  • Scale of implementation
  • IBM techsupport
Read full review
IBM
because we find out that DSX results have improved our approach to the whole subject (data, models, procedures)
Read full review
Usability
IBM
No answers on this topic
IBM
The UI flawlessly merges this offering by providing a neat, minimal, responsive interface
Read full review
Reliability and Availability
IBM
No answers on this topic
IBM
From time to time there are services unavailable, but we have been always informed before and they got back to work sooner than expected
Read full review
Performance
IBM
No answers on this topic
IBM
Never had slow response even on our very busy network
Read full review
Support Rating
IBM
No answers on this topic
IBM
I received answers mostly at once and got answered even further my question: they gave me interesting points of view and suggestion for deepening in the learning path
Read full review
In-Person Training
IBM
No answers on this topic
IBM
The trainers on the job are very smart with solutions and very able in teaching
Read full review
Online Training
IBM
No answers on this topic
IBM
The Platform is very handy and suggests further steps according my previous interests
Read full review
Implementation Rating
IBM
No answers on this topic
IBM
It surprised us with unpredictable case of use and brand new points of view
Read full review
Alternatives Considered
IBM
DataStage is more robust and stable than ODI The ability to perform complex transformations or implement business rules is much more developed in DS
Read full review
IBM
The main reason I personally changed over from Azure ML Studio is because it lacked any support for significant custom modelling with packages and services such as TensorFlow, scikit-learn, Microsoft Cognitive Toolkit and Spark ML. IBM Watson Studio provides these services and does so in a well integrated and easy to use fashion making it a preferable service over the other services that I have personally used.
Read full review
Scalability
IBM
No answers on this topic
IBM
It helped us in getting from 0 to DSX without getting lost
Read full review
Return on Investment
IBM
  • Productivity of the development of integration processes.
  • Better documentation and governance.
  • Reduce training costs of various technologies.
Read full review
IBM
  • Could instantly show data driven insights to drive 20% incremental revenue over existing results
  • Still don't have a real use case for unstructured data like twitter feed
  • Some of the insights around user actions have driven new projects to automate mundane tasks
Read full review
ScreenShots