Jupyter Notebook is an open-source web application that allows users to create and share documents containing live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, data visualization, and machine learning. It supports over 40 programming languages, and notebooks can be shared with others using email, Dropbox, GitHub and the Jupyter Notebook Viewer. It is used with JupyterLab, a web-based IDE for…
N/A
Keras
Score 7.0 out of 10
N/A
Keras is a Python deep learning library
N/A
Pricing
Jupyter Notebook
Keras
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Jupyter Notebook
Keras
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Jupyter Notebook
Keras
Features
Jupyter Notebook
Keras
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Jupyter Notebook
9.0
22 Ratings
7% above category average
Keras
-
Ratings
Connect to Multiple Data Sources
10.022 Ratings
00 Ratings
Extend Existing Data Sources
10.021 Ratings
00 Ratings
Automatic Data Format Detection
8.514 Ratings
00 Ratings
MDM Integration
7.415 Ratings
00 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Jupyter Notebook
7.0
22 Ratings
18% below category average
Keras
-
Ratings
Visualization
6.022 Ratings
00 Ratings
Interactive Data Analysis
8.022 Ratings
00 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Jupyter Notebook
9.5
22 Ratings
16% above category average
Keras
-
Ratings
Interactive Data Cleaning and Enrichment
10.021 Ratings
00 Ratings
Data Transformations
10.022 Ratings
00 Ratings
Data Encryption
8.514 Ratings
00 Ratings
Built-in Processors
9.314 Ratings
00 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Jupyter Notebook
9.3
22 Ratings
10% above category average
Keras
-
Ratings
Multiple Model Development Languages and Tools
10.021 Ratings
00 Ratings
Automated Machine Learning
9.218 Ratings
00 Ratings
Single platform for multiple model development
10.022 Ratings
00 Ratings
Self-Service Model Delivery
8.020 Ratings
00 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
I've created a number of daisy chain notebooks for different workflows, and every time, I create my workflows with other users in mind. Jupiter Notebook makes it very easy for me to outline my thought process in as granular a way as I want without using innumerable small. inline comments.
Keras is quite perfect, if the aim is to build the standard Deep Learning model, and materialize it to serve the real business use case, while it is not suitable if the purpose is for research and a lot of non-standard try out and customization are required, in that case either directly goes to low level TensorFlow API or Pytorch
One of the reason to use Keras is that it is easy to use. Implementing neural network is very easy in this, with just one line of code we can add one layer in the neural network with all it's configurations.
It provides lot of inbuilt thing like cov2d, conv2D, maxPooling layers. So it makes fast development as you don't need to write everything on your own. It comes with lot of data processing libraries in it like one hot encoder which also makes your development easy and fast.
It also provides functionality to develop models on mobile device.
Need more Hotkeys for creating a beautiful notebook. Sometimes we need to download other plugins which messes [with] its default settings.
Not as powerful as IDE, which sometimes makes [the] job difficult and allows duplicate code as it get confusing when the number of lines increases. Need a feature where [an] error comes if duplicate code is found or [if a] developer tries the same function name.
Jupyter is highly simplistic. It took me about 5 mins to install and create my first "hello world" without having to look for help. The UI has minimalist options and is quite intuitive for anyone to become a pro in no time. The lightweight nature makes it even more likeable.
With Jupyter Notebook besides doing data analysis and performing complex visualizations you can also write machine learning algorithms with a long list of libraries that it supports. You can make better predictions, observations etc. with it which can help you achieve better business decisions and save cost to the company. It stacks up better as we know Python is more widely used than R in the industry and can be learnt easily. Unlike PyCharm jupyter notebooks can be used to make documentations and exported in a variety of formats.
Keras is good to develop deep learning models. As compared to TensorFlow, it's easy to write code in Keras. You have more power with TensorFlow but also have a high error rate because you have to configure everything by your own. And as compared to MATLAB, I will always prefer Keras as it is easy and powerful as well.