Perfect for projects where Elasticsearch makes sense: if you decide to employ ES in a project, then you will almost inevitably use LogStash, and you should anyways. Such projects would include: 1. Data Science (reading, recording or measure web-based Analytics, Metrics) 2. Web Scraping (which was one of our earlier projects involving LogStash) 3. Syslog-ng Management: While I did point out that it can be a bit of an electric boo-ga-loo in finding an errant configuration item, it is still worth it to implement Syslog-ng management via LogStash: being able to fine-tune your log messages and then pipe them to other sources, depending on the data being read in, is incredibly powerful, and I would say is exemplar of what modern Computer Science looks like: Less Specialization in mathematics, and more specialization in storing and recording data (i.e. Less Engineering, and more Design).
As a 3rd party endpoint, SolarWinds Papertrail did exactly what it needed to. My hesitation is on the technical aptitude of the colleague receiving the recommendation, as the overall level of command line skill/understanding would have to be high. Web applications are a great solution here, but MOST of them already provide some sort of logging output. The scenario would definitely be in the situation where logging wasn't readily available in the current solution space. IF something like SolarWinds Papertrail was needed, it's probably the de facto thing that I would recommend.
Logstash design is definitely perfect for the use case of ELK. Logstash has "drivers" using which it can inject from virtually any source. This takes the headache from source to implement those "drivers" to store data to ES.
Logstash is fast, very fast. As per my observance, you don't need more than 1 or 2 servers for even big size projects.
Data in different shape, size, and formats? No worries, Logstash can handle it. It lets you write simple rules to programmatically take decisions real-time on data.
You can change your data on the fly! This is the CORE power of Logstash. The concept is similar to Kafka streams, the difference being the source and destination are application and ES respectively.
Since it's a Java product, JVM tuning must be done for handling high-load.
The persistent queue feature is nice, but I feel like most companies would want to use Kafka as a general storage location for persistent messages for all consumers to use. Using some pipeline of "Kafka input -> filter plugins -> Kafka output" seems like a good solution for data enrichment without needing to maintain a custom Kafka consumer to accomplish a similar feature.
I would like to see more documentation around creating a distributed Logstash cluster because I imagine for high ingestion use cases, that would be necessary.
It's extremely easy to use. I and new colleagues have never had any issues configuring this tool or setting it up, it works almost out of the box with very simple instructions to follow to configure it to our own environment. I would highly recommend it on that ability alone.
I honestly have never had the need to use the support team, as we have not run into any issues so far. If we did however, judging from how the tool itself works, I don't doubt that the team would provide excellent support for any issues that we may possibly run into.
MongoDB and Azure SQL Database are just that: Databases, and they allow you to pipe data into a database, which means that alot of the log filtering becomes a simple exercise of querying information from a DBMS. However, LogStash was chosen for it's ease of integration into our choice of using ELK Elasticsearch is an obvious inclusion: Using Logstash with it's native DevOps stack its really rational
CloudWatch, by itself, is terrible at search. CloudWatch Insights works great and has powerful search capabilities, but it's more difficult to set up alerts. Also, because Insights charges per search, you have the potential to accumulate a large bill if you need to do many searches. I like that SolarWinds Papertrail has a known monthly cost.
Positive: Learning curve was relatively easy for our team. We were up and running within a sprint.
Positive: Managing Logstash has generally been easy. We configure it, and usually, don't have to worry about misbehavior.
Negative: Updating/Rehydrating Logstash servers have been little challenging. We sometimes even loose data while Logstash is down. It requires more in-depth research and experiments to figure the fine-grained details.
Negative: This is now one more application/skill/server to manage. Like any other servers, it requires proper grooming or else you will get in trouble. This is also a single point of failure which can have the ability to make other servers useless if it is not running.