Amazon DocumentDB (with MongoDB compatibility) is presented by the vendor as a fast, scalable, highly available, and fully managed document database service that supports MongoDB workloads. As a document database, Amazon DocumentDB is designed to make it easy to store, query, and index JSON data.
N/A
Neo4j
Score 7.6 out of 10
N/A
Neo4j is an open source embeddable graph database developed by Neo Technologies based in San Mateo, California with an office in Sweden.
AWS Document DB (with MongoDB compatibility) is well suited when for all the workloads due to its huge feature offerings which will reduce our operational overhead and due to that we can focus more on our WorkLoad rather than optimising and fine tuning Databases. Its Offerings are Advanced Monitoring, DB cluster Upgrades, Migration Assistant, High Availability, Fault Tolerance, Data Durability, Security, Storage Auto Scaling, Backup Restore policies.AWS Document DB (with MongoDB compatibility) some of the features that are there in some other services like MongoDB Atlas that offers vast amount of features plus Supports Multi Cloud while Deploying Database clusters, Immediate support to latest Mongo DB versions, Mobile & Edge Sync like Atlas Edge Sync, Freedom to choose Database deployment in Any top Public Cloud, Having more then 100 plus Monitoring and Telemetry metrics for index and schema recommendations, More Compatibility with MongoDB queries.
Neo4J is great for creating network graphs or illustrating how things are related. It is also good for finding individuals or things that have greater influence than others in a system. It is not appropriate if you have standard data sets that can be analyzed using conventional methods or visualized using Tableau, for example.
Amazon DocumentDB (with MongoDB compatibility) provides Auto scaling of cluster as a by default functionality through this we can focus on more on our applications end
Through AWS Document DB without much operation overhead we can configure for Database's high availability, Durability, Backup Restores policies, Advanced Monitoring, Security Parameters.
Also they can provide us a Guide for Database Migration from any Supported Mongo DB vendor to AWS Document DB.
Via AWS Document DB query Logging ( Profiling ) we can fine tune our database queries and hence improving our END to END Customer Experience and Product Enhancements.
Mature Query language, I found Cypher QL to be mature in handling all sorts of problems we throw at it. Its expressive enough to be intuitive while providing rich features for various scenarios.
Native support for REST API, that makes interacting with Neo4J intuitive and easy.
Support for Procedures in Java, procedures are custom code that could be added to the Neo4J to write custom querying of data. The best part about the procedures is it could be invoked using the REST API. This allows us to overcome any shortcomings from their Cypher query language.
Nice UI and interface for executing the Query and visualizing the response.
UI access controlled by User credentials allows for neat access controls.
Awesome free community edition for small-scale projects.
One of the hardest challenges that Neo4j had to solve was the horizontal scaling problem. I am not updated on recent developments, but at the time of my use, I couldn't find a viable solution.
Neo4j does not play with other open source APIs like Blueprint. You have to use the native Neo4j API.
There wasn't a visual tool to see your data. Of course, third party tools are always available, but I would have loved something which came with the Neo4j bundle. I love that Docker comes bundled with Kitematic, so it's not wrong to hope that Neo4j could also ship with some default visualization software.
Neo4j is a graph store and has different use cases compared to another NoSQL Document store like MongoDB. MongoDB is a bad choice when joins are common as existing operators for joining two documents (similar to tables in a relational store) as Mongo 3.5 use SQL like join algorithms which are expensive. MongoDB is a great choice when distributed schemaless rich document structures are important requirements. Cross document transaction support is not native to MongoDB yet, whereas Neo4J is ACID complaint with all its operations.