Amazon DynamoDB is a cloud-native, NoSQL, serverless database service.
$0
capacity unit per hour
SingleStore
Score 8.3 out of 10
N/A
SingleStore aims to enable organizations to scale from one to one million customers, handling SQL, JSON, full text and vector workloads in one unified platform.
Its easier to query and faster. Ingestion is for the most part easier to understand and monitor and directly integrated with other storage solution products we use such as AWS S3. Singlestore overall is a better database to serve up an application large amounts of data very …
SingleStore provides an abstraction layer in managing a sharded database solution reducing complexity for the FLOWD team. Coupled with the SingleStore Managed Service, we are partnering with SingleStore to provide FLOWD services to various utilities & councils.
Verified User
Engineer
Chose SingleStore
SingleStore was the fastest sql database we have tried, allowing for analytical queries on TBs of data.
We've tried both these above, to solve ingestion and analytical queries. Dynamo was a perfect ingestion service, but it didn't allow us to run intense analytical queries. Aurora helped us run these analytical queries, and ingestion was reasonable, BUT the queries were simply …
It’s great for server less and real-time applications. It would be great for gaming and mobile apps. However, if you need relational database and have fixed budget, do not use it. While budget can be managed, you need to be careful. Also this is not a tool for storing big data, there are other wide-column database types you could use for it ins the ad
Good for Applications needing instant insights on large, streaming datasets. Applications processing continuous data streams with low latency. When a multi-cloud, high-availability database is required When NOT to Use Small-scale applications with limited budgets Projects that do not require real-time analytics or distributed scaling Teams without experience in distributed databases and HTAP architectures.
It does not release a patch to have back porting; it just releases a new version and stops support; it's difficult to keep up to that pace.
Support engineers lack expertise, but they seem to be improving organically.
Lacks enterprise CDC capability: Change data capture (CDC) is a process that tracks and records changes made to data in a database and then delivers those changes to other systems in real time.
For enterprise-level backup & restore capability, we had to implement our model via Velero snapshot backup.
It's core to our business, we couldn't survive without it. We use it to drive everything from FTP logins to processing stories and delivering them to clients. It's reliable and easy to query from all of our pipeline services. Integration with things like AWS Lambda makes it easy to trigger events and run code whenever something changes in the database.
Functionally, DynamoDB has the features needed to use it. The interface is not as easy to use, which impacts its usability. Being familiar with AWS in general is helpful in understanding the interface, however it would be better if the interface more closely aligned with traditional tools for managing datastores.
[Until it is] supported on AWS ECS containers, I will reserve a higher rating for SingleStore. Right now it works well on EC2 and serves our current purpose, [but] would look forward to seeing SingleStore respond to our urge of feature in a shorter time period with high quality and security.
It works very well across all the regions and response time is also very quick due to AWS's internal data transfer. Plus if your product requires HIPPA or some other regulations needs to be followed, you can easily replicate the DB into multiple regions and they manage all by it's own.
SingleStore excels in real-time analytics and low-latency transactions, making it ideal for operational analytics and mixed workloads. Snowflake shines in batch analytics and data warehousing with strong scalability for large datasets. SingleStore offers faster data ingestion and query execution for real-time use cases, while Snowflake is better for complex analytical queries on historical data.
The support deep dives into our most complexed queries and bizarre issues that sometimes only we get comparing to other clients. Our special workload (thousands of Kafka pipelines + high concurrency of queries). The response match to the priority of the request, P1 gets immediate return call. Missing features are treated, they become a client request and being added to the roadmap after internal consideration on all client needs and priority. Bugs are patched quite fast, depends on the impact and feasible temporary workarounds. There is no issue that we haven't got a proper answer, resolution or reasoning
We allowed 2-3 months for a thorough evaluation. We saw pretty quickly that we were likely to pick SingleStore, so we ported some of our stored procedures to SingleStore in order to take a deeper look. Two SingleStore people worked closely with us to ensure that we did not have any blocking problems. It all went remarkably smoothly.
The only thing that can be compared to DynamoDB from the selected services can be Aurora. It is just that we use Aurora for High-Performance requirements as it can be 6 times faster than normal RDS DB. Both of them have served as well in the required scenario and we are very happy with most of the AWS services.
Greenplum is good in handling very large amount of data. Concurrency in Greenplum was a major problem. Features available in SingleStore like Pipelines and in memory features are not available in Greenplum. Gemfire was not scaling well like SingleStore. Support of both Greenplum and Gemfire was not good. Product team did not help us much like the ones in SingleStore who helped us getting started on our first cluster very fast.
I have taken one point away due to its size limits. In case the application requires queries, it becomes really complicated to read and write data. When it comes to extremely large data sets such as the case in my company, a third-party logistics company, where huge amount of data is generated on a daily basis, even though the scalability is good, it becomes difficult to manage all the data due to limits.
Some developers see DynamoDB and try to fit problems to it, instead of picking the best solution for a given problem. This is true of any newer tool that people are trying to adopt.
It has allowed us to add more scalability to some of our systems.
As with any new technology there was a ramp up/rework phase as we learned best practices.
As the overall performance and functionality were expanded, we are able to deliver our data much faster than before, which increases the demand for data.
Metadata is available in the platform by default, like metadata on the pipelines. Also, the information schema has lots of metadata, making it easy to load our assets to the data catalog.