Anaconda vs. Vertex AI

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Anaconda
Score 8.4 out of 10
N/A
Anaconda provides access to the foundational open-source Python and R packages used in modern AI, data science, and machine learning. These enterprise-grade solutions enable corporate, research, and academic institutions around the world to harness open-source for competitive advantage and research. Anaconda also provides enterprise-grade security to open-source software through the Premium Repository.
$0
per month
Vertex AI
Score 8.8 out of 10
N/A
Vertex AI on Google Cloud is an MLOps solution, used to build, deploy, and scale machine learning (ML) models with fully managed ML tools for any use case.
$0
Starting at
Pricing
AnacondaVertex AI
Editions & Modules
Free Tier
$0
per month
Starter Tier
$9
per month
Business Tier
$50
per month per user
Enterprise Tier
60.00+
per month per user
Imagen model for image generation
$0.0001
Starting at
Text, chat, and code generation
$0.0001
per 1,000 characters
Text data upload, training, deployment, prediction
$0.05
per hour
Video data training and prediction
$0.462
per node hour
Image data training, deployment, and prediction
$1.375
per node hour
Offerings
Pricing Offerings
AnacondaVertex AI
Free Trial
NoYes
Free/Freemium Version
YesYes
Premium Consulting/Integration Services
YesNo
Entry-level Setup FeeNo setup feeOptional
Additional DetailsPricing is based on the Vertex AI tools and services, storage, compute, and Google Cloud resources used.
More Pricing Information
Community Pulse
AnacondaVertex AI
Top Pros

No answers on this topic

Top Cons

No answers on this topic

Features
AnacondaVertex AI
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Anaconda
9.3
25 Ratings
10% above category average
Vertex AI
-
Ratings
Connect to Multiple Data Sources9.822 Ratings00 Ratings
Extend Existing Data Sources8.024 Ratings00 Ratings
Automatic Data Format Detection9.721 Ratings00 Ratings
MDM Integration9.614 Ratings00 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Anaconda
8.5
25 Ratings
1% above category average
Vertex AI
-
Ratings
Visualization9.025 Ratings00 Ratings
Interactive Data Analysis8.024 Ratings00 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Anaconda
9.0
26 Ratings
9% above category average
Vertex AI
-
Ratings
Interactive Data Cleaning and Enrichment8.823 Ratings00 Ratings
Data Transformations8.026 Ratings00 Ratings
Data Encryption9.719 Ratings00 Ratings
Built-in Processors9.620 Ratings00 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Anaconda
9.2
24 Ratings
8% above category average
Vertex AI
-
Ratings
Multiple Model Development Languages and Tools9.023 Ratings00 Ratings
Automated Machine Learning8.921 Ratings00 Ratings
Single platform for multiple model development10.024 Ratings00 Ratings
Self-Service Model Delivery9.019 Ratings00 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Anaconda
9.5
21 Ratings
10% above category average
Vertex AI
-
Ratings
Flexible Model Publishing Options10.021 Ratings00 Ratings
Security, Governance, and Cost Controls9.020 Ratings00 Ratings
Best Alternatives
AnacondaVertex AI
Small Businesses
Jupyter Notebook
Jupyter Notebook
Score 8.9 out of 10
Saturn Cloud
Saturn Cloud
Score 8.2 out of 10
Medium-sized Companies
Posit
Posit
Score 9.8 out of 10
DataRobot
DataRobot
Score 8.6 out of 10
Enterprises
Posit
Posit
Score 9.8 out of 10
DataRobot
DataRobot
Score 8.6 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
AnacondaVertex AI
Likelihood to Recommend
10.0
(38 ratings)
7.3
(11 ratings)
Likelihood to Renew
7.0
(1 ratings)
-
(0 ratings)
Usability
9.0
(3 ratings)
-
(0 ratings)
Performance
-
(0 ratings)
7.2
(8 ratings)
Support Rating
8.9
(9 ratings)
-
(0 ratings)
Configurability
-
(0 ratings)
7.5
(8 ratings)
User Testimonials
AnacondaVertex AI
Likelihood to Recommend
Anaconda
I have asked all my juniors to work with Anaconda and Pycharm only, as this is the best combination for now. Coming to use cases: 1. When you have multiple applications using multiple Python variants, it is a really good tool instead of Venv (I never like it). 2. If you have to work on multiple tools and you are someone who needs to work on data analytics, development, and machine learning, this is good. 3. If you have to work with both R and Python, then also this is a good tool, and it provides support for both.
Read full review
Google
We needed to build some ML models and Vertex AI is one such place where all the functionalities are consolidated for model deployment, tweaking and monitoring. And although it is costly, it is compatible with google cloud services and is scalable which makes it the perfect tool for us.
Read full review
Pros
Anaconda
  • Anaconda is a one-stop destination for important data science and programming tools such as Jupyter, Spider, R etc.
  • Anaconda command prompt gave flexibility to use and install multiple libraries in Python easily.
  • Jupyter Notebook, a famous Anaconda product is still one of the best and easy to use product for students like me out there who want to practice coding without spending too much money.
Read full review
Google
  • Vertex AI comes with support for LOTs of LLMs out of the box
  • MLOps tools are available that help to standardize operational aspects
  • Document AI is an out of the box feature that works just perfectly for our use cases of automating lots to tedious data extraction tasks from images as well as papers
Read full review
Cons
Anaconda
  • It can have a cloud interface to store the work.
  • Compatible for large size files.
  • I used R Studio for building Machine Learning models, Many times when I tried to run the entire code together the software would crash. It would lead to loss of data and changes I made.
Read full review
Google
  • Customization of AutoML models - A must needed capability to be able to tweak hyperparameters and also working with different models
  • Model Explainability -Providing more comprehensive explanations about how models are utilizing features could be very beneficial
  • Model versioning and experiments tracking - Enhancing the versioning capability could be good for end users
Read full review
Likelihood to Renew
Anaconda
It's really good at data processing, but needs to grow more in publishing in a way that a non-programmer can interact with. It also introduces confusion for programmers that are familiar with normal Python processes which are slightly different in Anaconda such as virtualenvs.
Read full review
Google
No answers on this topic
Usability
Anaconda
I am giving this rating because I have been using this tool since 2017, and I was in college at that time. Initially, I hesitated to use it as I was not very aware of the workings of Python and how difficult it is to manage its dependency from project to project. Anaconda really helped me with that. The first machine-learning model that I deployed on the Live server was with Anaconda only. It was so managed that I only installed libraries from the requirement.txt file, and it started working. There was no need to manually install cuda or tensor flow as it was a very difficult job at that time. Graphical data modeling also provides tools for it, and they can be easily saved to the system and used anywhere.
Read full review
Google
No answers on this topic
Performance
Anaconda
No answers on this topic
Google
Vertex AI is very user friendly and it is very fast. We can spin up instances pretty quickly and it allows to work with GPU instances without much planning. Pages load up very quickly and tasks are competed pretty much in time frame. It integrates with other systems also very well.
Read full review
Support Rating
Anaconda
Anaconda provides fast support, and a large number of users moderate its online community. This enables any questions you may have to be answered in a timely fashion, regardless of the topic. The fact that it is based in a Python environment only adds to the size of the online community.
Read full review
Google
No answers on this topic
Alternatives Considered
Anaconda
I have experience using RStudio oustide of Anaconda. RStudio can be installed via anaconda, but I like to use RStudio separate from Anaconda when I am worin in R. I tend to use Anaconda for python and RStudio for working in R. Although installing libraries and packages can sometimes be tricky with both RStudio and Anaconda, I like installing R packages via RStudio. However, for anything python-related, Anaconda is my go to!
Read full review
Google
Vertex AI is much more accessible to non-developers than IBM's product. Moreover, Vertex AI integrates well with other Google products, enhancing its capabilities. A big plus is its integration with cloud storage, that allows for better management and access of data. In all honesty, it wasn't much of a difficult choice to choose Vertex AI.
Read full review
Return on Investment
Anaconda
  • It has helped our organization to work collectively faster by using Anaconda's collaborative capabilities and adding other collaboration tools over.
  • By having an easy access and immediate use of libraries, developing times has decreased more than 20 %
  • There's an enormous data scientist shortage. Since Anaconda is very easy to use, we have to be able to convert several professionals into the data scientist. This is especially true for an economist, and this my case. I convert myself to Data Scientist thanks to my econometrics knowledge applied with Anaconda.
Read full review
Google
  • It is pay as you go model so it'll save more cost of your org. In our case previously we used to incurred 1-2L/Month now we are reduced it to 80k-1L.
  • It'll help you save your model training & model selection time as it provides pre-trained models in autoML.
  • It'll help you in terms of Security wherein we can use row level security access to authorized persons.
Read full review
ScreenShots

Vertex AI Screenshots

Screenshot of an introduction to generative AI on Vertex AI - Vertex AI Studio offers a Google Cloud console tool for rapidly prototyping and testing generative AI models.Screenshot of gen AI for summarization, classification, and extraction - Text prompts can be created to handle any number of tasks with Vertex AI’s generative AI support. Some of the most common tasks are classification, summarization, and extraction. Vertex AI’s PaLM API for text can be used to design prompts with flexibility in terms of their structure and format.Screenshot of Custom ML training overview and documentation - An overview of the custom training workflow in Vertex AI, the benefits of custom training, and the various training options that are available. This page also details every step involved in the ML training workflow from preparing data to predictions.Screenshot of ML model training and creation -  A guide that shows how Vertex AI’s AutoML is used to create and train custom machine learning models with minimal effort and machine learning expertise.Screenshot of deployment for batch or online predictions - When using a model to solve a real-world problem, the Vertex AI prediction service can be used for batch and online predictions.