Anaconda provides access to the foundational open-source Python and R packages used in modern AI, data science, and machine learning. These enterprise-grade solutions enable corporate, research, and academic institutions around the world to harness open-source for competitive advantage and research. Anaconda also provides enterprise-grade security to open-source software through the Premium Repository.
$0
per month
Microsoft Visual Studio Code
Score 9.0 out of 10
N/A
Microsoft offers Visual Studio Code, a text editor that supports code editing, debugging, IntelliSense syntax highlighting, and other features.
There are several reasons why Anaconda is better to use for me including that it is much easier to use than Baycharm. Also, the user interface is not as complicated as that of Baycharm. Even Anaconda does not slow down my device, using PaySharm slowed down my device in an …
In Anaconda, [it is easy] to find and install the required libraries. Here, we can work on multiple projects with different sets of the environment. [It is] easy to create the notebook for developing the ML model and deployment. Right now, it is the best data science version …
Some analyzed tools, such as PyCharm and Spyder, are simpler to use but still do not have all the libraries needed for those starting out in data science--or in institutions that need to grow in that direction. Anaconda is more robust but stable, more complete, and the …
If the project is not large scale then Jupiter notebooks or Visual Studio Code serve well. If you don't have any dependency on Python versions, these IDEs can be well suited for fast development and deployment.
Anaconda includes many standard data science packages where as the regular python installation does not. Depending on use case, some may feel Anaconda may be "bloated" For ease Anaconda is better, for minimizing extraneous package installation, the regular python installer is …
Microsoft Visual Studio Code is more lightweight than most other options, such as Spyder and MATLAB. These other applications provide strong benefits such as a useful user interface that displays information about variables in in your workspace, as well as a window for built-in …
I have asked all my juniors to work with Anaconda and Pycharm only, as this is the best combination for now. Coming to use cases: 1. When you have multiple applications using multiple Python variants, it is a really good tool instead of Venv (I never like it). 2. If you have to work on multiple tools and you are someone who needs to work on data analytics, development, and machine learning, this is good. 3. If you have to work with both R and Python, then also this is a good tool, and it provides support for both.
Microsoft Visual Studio Code is highly recommended for the development of systems and / or complex applications entrusted to work teams under a specific methodology, and its use is also recommended for the maintenance of previously developed applications.
It is not recommended as a learning environment for developers with little experience as the learning curve would be too high
Anaconda is a one-stop destination for important data science and programming tools such as Jupyter, Spider, R etc.
Anaconda command prompt gave flexibility to use and install multiple libraries in Python easily.
Jupyter Notebook, a famous Anaconda product is still one of the best and easy to use product for students like me out there who want to practice coding without spending too much money.
I used R Studio for building Machine Learning models, Many times when I tried to run the entire code together the software would crash. It would lead to loss of data and changes I made.
It's really good at data processing, but needs to grow more in publishing in a way that a non-programmer can interact with. It also introduces confusion for programmers that are familiar with normal Python processes which are slightly different in Anaconda such as virtualenvs.
Solid tool that provides everything you need to develop most types of applications. The only reason not a 10 is that if you are doing large distributed teams on Enterprise level, Professional does provide more tools to support that and would be worth the cost.
I am giving this rating because I have been using this tool since 2017, and I was in college at that time. Initially, I hesitated to use it as I was not very aware of the workings of Python and how difficult it is to manage its dependency from project to project. Anaconda really helped me with that. The first machine-learning model that I deployed on the Live server was with Anaconda only. It was so managed that I only installed libraries from the requirement.txt file, and it started working. There was no need to manually install cuda or tensor flow as it was a very difficult job at that time. Graphical data modeling also provides tools for it, and they can be easily saved to the system and used anywhere.
Looking at our current implementation, Microsoft Visual Studio Code is perfect for writing code and performing debug operations. Integration with SVN repository is easy and changes can be tracked effectively. Microsoft Visual Studio Code supports developers to write code productively using syntax check and easy customization. Microsoft Visual Studio Code also provides support for IntelliSense which prompts suggestions for code completion. It is easy to step through code using interactive debugger to inspect the root cause of error quickly.
Anaconda provides fast support, and a large number of users moderate its online community. This enables any questions you may have to be answered in a timely fashion, regardless of the topic. The fact that it is based in a Python environment only adds to the size of the online community.
Active development means filing a bug on the GitHub repo typically gets you a response within 4 days. There are plugins for almost everything you need, whether it be linting, Vim emulation, even language servers (which I use to code in Scala). There is well-maintained official documentation. The only thing missing is forums. The closest thing is GitHub issues, which typically has the answers but is hard to sift through -- there are currently 78k issues.
I have experience using RStudio oustide of Anaconda. RStudio can be installed via anaconda, but I like to use RStudio separate from Anaconda when I am worin in R. I tend to use Anaconda for python and RStudio for working in R. Although installing libraries and packages can sometimes be tricky with both RStudio and Anaconda, I like installing R packages via RStudio. However, for anything python-related, Anaconda is my go to!
[Microsoft] Visual Studio Code beats the competition due to its extensibility. Their robust extensions architecture combined with the plethora of mostly free extensions written by the community can't be beaten. The fact that this tool itself is provided by a world-recognized company, Microsoft, free of charge is phenomenal. The goodwill garnered by them is immeasurable. Other tools I've used were missing features or were just too rigid, too complicated, or too unsophisticated for my liking. The fact that VS Code is easy to mold to my will with the right extensions seals the deal.
It has helped our organization to work collectively faster by using Anaconda's collaborative capabilities and adding other collaboration tools over.
By having an easy access and immediate use of libraries, developing times has decreased more than 20 %
There's an enormous data scientist shortage. Since Anaconda is very easy to use, we have to be able to convert several professionals into the data scientist. This is especially true for an economist, and this my case. I convert myself to Data Scientist thanks to my econometrics knowledge applied with Anaconda.
Positive impact on minimizing time wasted by employees with software installation and setup
Positive impact on reducing spend on software licensing
Positive impact on minimizing time used to manage different applications for different purposes - this performs all of the functions we need in basic coding