Apache Spark is a multi-language engine for executing data engineering, data science, and machine learning on single-node machines or clusters.
N/A
Jupyter Notebook
Score 8.5 out of 10
N/A
Jupyter Notebook is an open-source web application that allows users to create and share documents containing live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, data visualization, and machine learning. It supports over 40 programming languages, and notebooks can be shared with others using email, Dropbox, GitHub and the Jupyter Notebook Viewer. It is used with JupyterLab, a web-based IDE for…
N/A
Pricing
Apache Spark
Jupyter Notebook
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache Spark
Jupyter Notebook
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Apache Spark
Jupyter Notebook
Features
Apache Spark
Jupyter Notebook
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Apache Spark
-
Ratings
Jupyter Notebook
9.0
22 Ratings
7% above category average
Connect to Multiple Data Sources
00 Ratings
10.022 Ratings
Extend Existing Data Sources
00 Ratings
10.021 Ratings
Automatic Data Format Detection
00 Ratings
8.514 Ratings
MDM Integration
00 Ratings
7.415 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Apache Spark
-
Ratings
Jupyter Notebook
7.0
22 Ratings
18% below category average
Visualization
00 Ratings
6.022 Ratings
Interactive Data Analysis
00 Ratings
8.022 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Apache Spark
-
Ratings
Jupyter Notebook
9.5
22 Ratings
16% above category average
Interactive Data Cleaning and Enrichment
00 Ratings
10.021 Ratings
Data Transformations
00 Ratings
10.022 Ratings
Data Encryption
00 Ratings
8.514 Ratings
Built-in Processors
00 Ratings
9.314 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Apache Spark
-
Ratings
Jupyter Notebook
9.3
22 Ratings
10% above category average
Multiple Model Development Languages and Tools
00 Ratings
10.021 Ratings
Automated Machine Learning
00 Ratings
9.218 Ratings
Single platform for multiple model development
00 Ratings
10.022 Ratings
Self-Service Model Delivery
00 Ratings
8.020 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Well suited: To most of the local run of datasets and non-prod systems - scalability is not a problem at all. Including data from multiple types of data sources is an added advantage. MLlib is a decently nice built-in library that can be used for most of the ML tasks. Less appropriate: We had to work on a RecSys where the music dataset that we used was around 300+Gb in size. We faced memory-based issues. Few times we also got memory errors. Also the MLlib library does not have support for advanced analytics and deep-learning frameworks support. Understanding the internals of the working of Apache Spark for beginners is highly not possible.
I've created a number of daisy chain notebooks for different workflows, and every time, I create my workflows with other users in mind. Jupiter Notebook makes it very easy for me to outline my thought process in as granular a way as I want without using innumerable small. inline comments.
Need more Hotkeys for creating a beautiful notebook. Sometimes we need to download other plugins which messes [with] its default settings.
Not as powerful as IDE, which sometimes makes [the] job difficult and allows duplicate code as it get confusing when the number of lines increases. Need a feature where [an] error comes if duplicate code is found or [if a] developer tries the same function name.
If the team looking to use Apache Spark is not used to debug and tweak settings for jobs to ensure maximum optimizations, it can be frustrating. However, the documentation and the support of the community on the internet can help resolve most issues. Moreover, it is highly configurable and it integrates with different tools (eg: it can be used by dbt core), which increase the scenarios where it can be used
Jupyter is highly simplistic. It took me about 5 mins to install and create my first "hello world" without having to look for help. The UI has minimalist options and is quite intuitive for anyone to become a pro in no time. The lightweight nature makes it even more likeable.
1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
With Jupyter Notebook besides doing data analysis and performing complex visualizations you can also write machine learning algorithms with a long list of libraries that it supports. You can make better predictions, observations etc. with it which can help you achieve better business decisions and save cost to the company. It stacks up better as we know Python is more widely used than R in the industry and can be learnt easily. Unlike PyCharm jupyter notebooks can be used to make documentations and exported in a variety of formats.