Apache Spark vs. Jupyter Notebook

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Spark
Score 8.8 out of 10
N/A
N/AN/A
Jupyter Notebook
Score 8.9 out of 10
N/A
Jupyter Notebook is an open-source web application that allows users to create and share documents containing live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, data visualization, and machine learning. It supports over 40 programming languages, and notebooks can be shared with others using email, Dropbox, GitHub and the Jupyter Notebook Viewer. It is used with JupyterLab, a web-based IDE for…N/A
Pricing
Apache SparkJupyter Notebook
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache SparkJupyter Notebook
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Features
Apache SparkJupyter Notebook
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Apache Spark
-
Ratings
Jupyter Notebook
8.5
21 Ratings
2% above category average
Connect to Multiple Data Sources00 Ratings9.021 Ratings
Extend Existing Data Sources00 Ratings9.220 Ratings
Automatic Data Format Detection00 Ratings8.514 Ratings
MDM Integration00 Ratings7.415 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Apache Spark
-
Ratings
Jupyter Notebook
9.6
21 Ratings
13% above category average
Visualization00 Ratings9.621 Ratings
Interactive Data Analysis00 Ratings9.621 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Apache Spark
-
Ratings
Jupyter Notebook
9.0
21 Ratings
10% above category average
Interactive Data Cleaning and Enrichment00 Ratings9.320 Ratings
Data Transformations00 Ratings8.921 Ratings
Data Encryption00 Ratings8.514 Ratings
Built-in Processors00 Ratings9.314 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Apache Spark
-
Ratings
Jupyter Notebook
8.9
21 Ratings
6% above category average
Multiple Model Development Languages and Tools00 Ratings9.020 Ratings
Automated Machine Learning00 Ratings9.218 Ratings
Single platform for multiple model development00 Ratings9.321 Ratings
Self-Service Model Delivery00 Ratings8.020 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Apache Spark
-
Ratings
Jupyter Notebook
8.8
19 Ratings
3% above category average
Flexible Model Publishing Options00 Ratings8.819 Ratings
Security, Governance, and Cost Controls00 Ratings8.718 Ratings
Best Alternatives
Apache SparkJupyter Notebook
Small Businesses

No answers on this topic

Saturn Cloud
Saturn Cloud
Score 9.1 out of 10
Medium-sized Companies
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
Posit
Posit
Score 9.4 out of 10
Enterprises
IBM Analytics Engine
IBM Analytics Engine
Score 8.6 out of 10
Posit
Posit
Score 9.4 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache SparkJupyter Notebook
Likelihood to Recommend
10.0
(23 ratings)
8.3
(22 ratings)
Likelihood to Renew
10.0
(1 ratings)
-
(0 ratings)
Usability
10.0
(3 ratings)
10.0
(1 ratings)
Support Rating
8.7
(4 ratings)
9.0
(1 ratings)
User Testimonials
Apache SparkJupyter Notebook
Likelihood to Recommend
Apache
Well suited: To most of the local run of datasets and non-prod systems - scalability is not a problem at all. Including data from multiple types of data sources is an added advantage. MLlib is a decently nice built-in library that can be used for most of the ML tasks. Less appropriate: We had to work on a RecSys where the music dataset that we used was around 300+Gb in size. We faced memory-based issues. Few times we also got memory errors. Also the MLlib library does not have support for advanced analytics and deep-learning frameworks support. Understanding the internals of the working of Apache Spark for beginners is highly not possible.
Read full review
Open Source
I've created a number of daisy chain notebooks for different workflows, and every time, I create my workflows with other users in mind. Jupiter Notebook makes it very easy for me to outline my thought process in as granular a way as I want without using innumerable small. inline comments.
Read full review
Pros
Apache
  • Rich APIs for data transformation making for very each to transform and prepare data in a distributed environment without worrying about memory issues
  • Faster in execution times compare to Hadoop and PIG Latin
  • Easy SQL interface to the same data set for people who are comfortable to explore data in a declarative manner
  • Interoperability between SQL and Scala / Python style of munging data
Read full review
Open Source
  • Simple and elegant code writing ability. Easier to understand the code that way.
  • The ability to see the output after each step.
  • The ability to use ton of library functions in Python.
  • Easy-user friendly interface.
Read full review
Cons
Apache
  • Memory management. Very weak on that.
  • PySpark not as robust as scala with spark.
  • spark master HA is needed. Not as HA as it should be.
  • Locality should not be a necessity, but does help improvement. But would prefer no locality
Read full review
Open Source
  • Need more Hotkeys for creating a beautiful notebook. Sometimes we need to download other plugins which messes [with] its default settings.
  • Not as powerful as IDE, which sometimes makes [the] job difficult and allows duplicate code as it get confusing when the number of lines increases. Need a feature where [an] error comes if duplicate code is found or [if a] developer tries the same function name.
Read full review
Likelihood to Renew
Apache
Capacity of computing data in cluster and fast speed.
Read full review
Open Source
No answers on this topic
Usability
Apache
The only thing I dislike about spark's usability is the learning curve, there are many actions and transformations, however, its wide-range of uses for ETL processing, facility to integrate and it's multi-language support make this library a powerhouse for your data science solutions. It has especially aided us with its lightning-fast processing times.
Read full review
Open Source
Jupyter is highly simplistic. It took me about 5 mins to install and create my first "hello world" without having to look for help. The UI has minimalist options and is quite intuitive for anyone to become a pro in no time. The lightweight nature makes it even more likeable.
Read full review
Support Rating
Apache
1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Read full review
Open Source
I haven't had a need to contact support. However, all required help is out there in public forums.
Read full review
Alternatives Considered
Apache
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Read full review
Open Source
With Jupyter Notebook besides doing data analysis and performing complex visualizations you can also write machine learning algorithms with a long list of libraries that it supports. You can make better predictions, observations etc. with it which can help you achieve better business decisions and save cost to the company. It stacks up better as we know Python is more widely used than R in the industry and can be learnt easily. Unlike PyCharm jupyter notebooks can be used to make documentations and exported in a variety of formats.
Read full review
Return on Investment
Apache
  • Business leaders are able to take data driven decisions
  • Business users are able access to data in near real time now . Before using spark, they had to wait for at least 24 hours for data to be available
  • Business is able come up with new product ideas
Read full review
Open Source
  • Positive impact: flexible implementation on any OS, for many common software languages
  • Positive impact: straightforward duplication for adaptation of workflows for other projects
  • Negative impact: sometimes encourages pigeonholing of data science work into notebooks versus extending code capability into software integration
Read full review
ScreenShots