Dataiku vs. IBM watsonx.ai

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Dataiku
Score 8.2 out of 10
N/A
The Dataiku platform unifies data work from analytics to Generative AI. It supports enterprise analytics with visual, cloud-based tooling for data preparation, visualization, and workflow automation.N/A
IBM watsonx.ai
Score 8.7 out of 10
N/A
Watsonx.ai is part of the IBM watsonx platform that brings together new generative AI capabilities, powered by foundation models, and traditional machine learning into a studio spanning the AI lifecycle. Watsonx.ai can be used to train, validate, tune, and deploy generative AI, foundation models, and machine learning capabilities, and build AI applications with less time and data.
$0
Pricing
DataikuIBM watsonx.ai
Editions & Modules
Discover
Contact sales team
Business
Contact sales team
Enterprise
Contact sales team
Free Trial
$0
ML functionality (20 CUH limit /month); Inferencing (50,000 tokens / month)
Standard
$1,050
Monthly tier fee; additional usage based fees
Essentials
Contact Sales
Usage based fees
Offerings
Pricing Offerings
DataikuIBM watsonx.ai
Free Trial
YesYes
Free/Freemium Version
YesYes
Premium Consulting/Integration Services
NoYes
Entry-level Setup FeeNo setup feeNo setup fee
Additional DetailsPricing for watsonx.ai includes: model inference per 1000 tokens and ML tools and ML runtimes based on capacity unit hours.
More Pricing Information
Community Pulse
DataikuIBM watsonx.ai
Features
DataikuIBM watsonx.ai
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Dataiku
8.6
5 Ratings
3% above category average
IBM watsonx.ai
-
Ratings
Connect to Multiple Data Sources8.05 Ratings00 Ratings
Extend Existing Data Sources10.04 Ratings00 Ratings
Automatic Data Format Detection10.05 Ratings00 Ratings
MDM Integration6.52 Ratings00 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Dataiku
10.0
5 Ratings
18% above category average
IBM watsonx.ai
-
Ratings
Visualization10.05 Ratings00 Ratings
Interactive Data Analysis10.05 Ratings00 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Dataiku
9.5
5 Ratings
16% above category average
IBM watsonx.ai
-
Ratings
Interactive Data Cleaning and Enrichment9.05 Ratings00 Ratings
Data Transformations9.05 Ratings00 Ratings
Data Encryption10.04 Ratings00 Ratings
Built-in Processors10.04 Ratings00 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Dataiku
8.5
5 Ratings
1% above category average
IBM watsonx.ai
-
Ratings
Multiple Model Development Languages and Tools8.05 Ratings00 Ratings
Automated Machine Learning8.05 Ratings00 Ratings
Single platform for multiple model development8.05 Ratings00 Ratings
Self-Service Model Delivery10.04 Ratings00 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Dataiku
8.0
5 Ratings
6% below category average
IBM watsonx.ai
-
Ratings
Flexible Model Publishing Options8.05 Ratings00 Ratings
Security, Governance, and Cost Controls8.05 Ratings00 Ratings
Best Alternatives
DataikuIBM watsonx.ai
Small Businesses
Jupyter Notebook
Jupyter Notebook
Score 8.5 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Medium-sized Companies
Posit
Posit
Score 10.0 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Enterprises
Posit
Posit
Score 10.0 out of 10
Dataiku
Dataiku
Score 8.2 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
DataikuIBM watsonx.ai
Likelihood to Recommend
10.0
(4 ratings)
9.0
(33 ratings)
Likelihood to Renew
-
(0 ratings)
6.4
(1 ratings)
Usability
10.0
(1 ratings)
7.9
(6 ratings)
Support Rating
9.4
(3 ratings)
-
(0 ratings)
Ease of integration
-
(0 ratings)
6.4
(2 ratings)
Product Scalability
-
(0 ratings)
9.1
(1 ratings)
User Testimonials
DataikuIBM watsonx.ai
Likelihood to Recommend
Dataiku
Dataiku is an awesome tool for data scientists. It really makes our lives easier. It is also really good for non technical users to see and follow along with the process. I do think that people can fall into the trap of using it without any knowledge at all because so much is automated, but I dont think that is the fault of Dataiku.
Read full review
IBM
I have built a code accelerator tool for one of the IBM product implementation. Although there was a heavy lifting at the start to train the model on specifics of the packaged solution library and ways of working; the efficacy of the model is astounding. Having said that, watsonx.ai is very well suited for customer service automation, healthcare data analytics, financial fraud detection, and sentiment analysis kind of projects. The Watsonx.ai look and feel is little confusing but I understand over a period of time , it will improve dramatically as well. I do feel that Watsonx.ai has certain limitations from cross-platform deployment flexibility. If an organization is deeply invested in a multi-cloud environment, Watson's integration on other cloud platforms may not be seamless comported to other AI platforms.
Read full review
Pros
Dataiku
  • Allows users to collaborate and monitor individual tasks
  • Caters to both types of analysts, coders and non-coders, alike
  • Integrate graphs and plots with visualization tools such as Tableau
Read full review
IBM
  • It allows specialists to apply several base models for specific subtasks in the field of NLP.
  • Gives the availability of many models developed for AI enhancement for different solutions.
  • Has incorporated functionality for data governance and security to support access to AI tools by multiple users.
Read full review
Cons
Dataiku
  • The integrated windows of frontend and backend in web applications make it cumbersome for the developer.
  • When dealing with multiple data flows, it becomes really confusing, though they have introduced a feature (Zones) to cater to this issue.
  • Bundling, exporting, and importing projects sometimes create issues related to code environment. If the code environment is not available, at least the schema of the flow we should be able to import should be.
Read full review
IBM
  • IBM watsonx.ai is expensive than other platforms.
  • Limited integraions though it has many but still some tools integrations not there for medical usecase
  • Its little difficult to learn as right now not many open reseouces
  • Community is not that strong to get any answer
Read full review
Likelihood to Renew
Dataiku
No answers on this topic
IBM
I still don't have enough experience, but i have seen a lot of demos and i have made some real world scenarios and so far so long every thing looks fine. I was at IBM Think 2025 and IBM TechXchange 2025 and the labs were really usefull and simple to understand.
Read full review
Usability
Dataiku
The user experience is very good. Everything feels intuitive and "flows" (sorry excuse the pun) so nicely, and the customization level is also appropriate to the tool. Even as a newer data scientist, it felt easy to use and the explanations/tutorials were very good. The documentation is also at a good level
Read full review
IBM
I needed some time to understand the different parts of the web UI. It was slightly overwhelming in the beginning. However, after some time, it made sense, and I like the UI now. In terms of functionality, there are many useful features that make your life easy, like jumping to a section and giving me a deployment space to deploy my models easily.
Read full review
Support Rating
Dataiku
The open source user community is friendly, helpful, and responsive, at times even outdoing commercial software vendors. Documentation is also top notch, and usually resolves issues without the need for human interactions. Great product design, with a focus on user experience, also makes platform use intuitive, thus reducing the need for explicit support.
Read full review
IBM
I still don't have enough experience, but i have seen a lot of demos and i have made some real world scenarios and so far so long every thing looks fine. I was at IBM Think 2025 and IBM TechXchange 2025 and the labs were really usefull and simple to understand.
Read full review
Alternatives Considered
Dataiku
Anaconda is mainly used by professional data scientists who have profound knowledge of Python coding, mainly used for building some new algorithm block or some optimization, then the module will be integrated into the Dataiku pipeline/workflow. While Dataiku can be used by even other kinds of users.
Read full review
IBM
IBM watsonx.ai has been far superior to that of Chat GPT AI. the UI elements prompt responses and overall execution of the AI was much better and more accurate compared to the competition. I can not recommend using this platform enough. Great job IBM. I hope the team behind this project continues to grow and prosper.
Read full review
Scalability
Dataiku
No answers on this topic
IBM
I still don't have enough experience, but i have seen a lot of demos and i have made some real world scenarios and so far so long every thing looks fine. I was at IBM Think 2025 and IBM TechXchange 2025 and the labs were really usefull and simple to understand.
Read full review
Return on Investment
Dataiku
  • Customer satisfaction
  • Timely project delivery
Read full review
IBM
  • Time saving to set up the infrastructure - without watsonx.ai we would have had to set up everything individually
  • The first point translates directly into cost savings
  • The compliance aspect was a game changer for us and provided us with the confidence to focus all our efforts only on IBM watsonx.ai
Read full review
ScreenShots

IBM watsonx.ai Screenshots

Screenshot of the foundation models available in watsonx.ai. Clients have access to IBM selected open source models from Hugging Face, as well as other third-party models, and a family of IBM-developed foundation models of different sizes and architectures.Screenshot of the Prompt Lab in watsonx.ai, where AI builders can work with foundation models and build prompts using prompt engineering techniques in watsonx.ai to support a range of Natural Language Processing (NLP) type tasks.Screenshot of the Tuning Studio in watsonx.ai, where AI builders can tune foundation models with labeled data for better performance and accuracy.Screenshot of the data science toolkit in watsonx.ai where AI builders can build machine learning models automatically with model training, development, visual modeling, and synthetic data generation.