Denodo is the eponymous data integration platform from the global company headquartered in Silicon Valley.
N/A
Matillion
Score 6.9 out of 10
N/A
Matillion is a data pipeline platform used to build and manage pipelines. Matillion empowers data teams with no-code and AI capabilities to be more productive, integrating data wherever it lives and delivering data that’s ready for AI and analytics.
$2.50
Pay as you go per user
Pricing
Denodo
Matillion
Editions & Modules
No answers on this topic
Developer: For Individuals
$2.50/credit
Pay as you go per user
Basic
$1000
per month 500 prepaid credits (additional credits: $2.18/credit)
Advanced
$2000
per month 750 prepaid credits (additional credits: $2.73/credit)
Enterprise
Request a Quote
Offerings
Pricing Offerings
Denodo
Matillion
Free Trial
No
Yes
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
Yes
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
Billed directly via cloud marketplace on an hourly basis, with annual subscriptions available depending on the customer's cloud data warehouse provider.
Denodo allows us to create and combine new views to create a virtual repository and APIs without a single line of code. It is excellent because it can present connectors with a view format for downstream consumers by flattening a JSON file. Reading or connecting to various sources and displaying a tabular view is an excellent feature. The product's technical data catalog is well-organized.
In a fast-growing startup-like environment, you’d want a graphical user interface representation of all your data work instead of using tools like Airflow. It’s good to deal with many ad hoc tasks, including in-house and external APIs, data lakes, and data warehouses. It’s also cheaper.
Caching - but I am sure it will be improved by now. There were times when we expected the cache to be refreshed but it was stale.
Schema generation of endpoints from API response was sometimes incomplete as not all API calls returned all the fields. Will be good to have an ability to load the schema itself (XSD/JSON/Soap XML etc).
Denodo exposed web services were in preliminary stage when we used; I'm sure it will be improved by now.
Export/Import deployment, while it was helpful, there were unexpected issues without any errors during deployment. Issues were only identified during testing. Some views were not created properly and did not work. If it was working in the environment from where it was exported from, it should work in the environment where it is imported.
Matillion is brilliant at importing data -- it would be amazing to have more ways to export data, from emailed exports to API pushes.
Any Python that takes more than a few lines of code requires an external server to run it. It would be great to have more integration (perhaps in a connected virtual environment) to easily integrate customized code.
Troubleshooting server logs requires quite a bit of technical expertise. More human readable detailed error handling would be greatly appreciated.
With the current experience of Matillion, we are likely to renew with the current feature option but will also look for improvement in various areas including scalability and dependability. 1. Connectors: It offers various connectors option but isn't full proof which we will be looking forward as we grow. 2. Scalability: As usage increase, we want Matillion system to be more stable.
We are able to bring on new resources and teach them how to use Matillion without having to invest a significant amount of time. We prefer looking for resources with any type of ETL skill-set and feel that they can learn Matillion without problem. In addition, the prebuilt objects cover more than 95% of our use cases and we do not have to build much from scratch.
Denodo is a tool to rapidly mash data sources together and create meaningful datasets. It does have its downfalls though. When you create larger, more complex datasets, you will most likely need to cache your datasets, regardless of how proper your joins are set up. Since DV takes data from multiple environments, you are taxing the corporate network, so you need to be conscious of how much data you are sending through the network and truly understand how and when to join datasets due to this.
Overall, I've found Matillion to be responsive and considerate. I feel like they value us as a customer even when I know they have customers who spend more on the product than we do. That speaks to a motive higher than money. They want to make a good product and a good experience for their customers. If I have any complaint, it's that support sometimes feels community-oriented. It isn't always immediately clear to me that my support requests are going to a support engineer and not to the community at large. Usually, though, after a bit of conversation, it's clear that Matillion is watching and responding. And responses are generally quick in coming.
Fivetran offers a managed service and pre-configured schemas/models for data loading, which means much less administrative work for initial setup and ongoing maintenance. But it comes at a much higher price tag. So, knowing where your sweet spot is in the build vs. buy spectrum is essential to deciding which tool fits better. For the transformation part, dbt is purely (SQL-) code-based. So, it is mainly whether your developers prefer a GUI or code-based approach.
We're using Matillion on EC2 instances, and we have about 20 projects for our clients in the same instance. Sometimes, we're struggling to manage schedules for all projects because thread management is not visible, and we can't see the process at the instance level.