erwin Data Modeler by Quest is a data modeling tool used to find, visualize, design, deploy and standardize high-quality enterprise data assets. It can discover and document any data from anywhere for consistency, clarity and artifact reuse across large-scale data integration, master data management, metadata management, Big Data, business intelligence and analytics initiatives, accomplishing this whil esupporting data governance and intelligence efforts.
N/A
MongoDB Atlas
Score 8.2 out of 10
N/A
MongoDB Atlas is the company's automated managed cloud service, supplying automated deployment, provisioning and patching, and other features supporting database monitoring and optimization.
$57
per month
Pricing
erwin Data Modeler
MongoDB Atlas
Editions & Modules
No answers on this topic
Dedicated Clusters
$57
per month
Dedicated Multi-Reigon Clusters
$95
per month
Shared Clusters
Free
Offerings
Pricing Offerings
erwin Data Modeler
MongoDB Atlas
Free Trial
Yes
No
Free/Freemium Version
No
Yes
Premium Consulting/Integration Services
Yes
No
Entry-level Setup Fee
Optional
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
erwin Data Modeler
MongoDB Atlas
Features
erwin Data Modeler
MongoDB Atlas
Database-as-a-Service
Comparison of Database-as-a-Service features of Product A and Product B
I have had a chance to use few other data modeling tools from Quest and Oracle, but I am most comfortable using erwin Data Modeler. They understand your data modeling needs and have designed the software to give you a feeling of completeness when you are designing a data model.
It is good if you: 1. Have unstructured data that you need to save (since it is NoSQL DB) 2. You don't have time or knowledge to setup the MongoDB Atlas, the managed service is the way to go (Atlas) 3. If you need a multi regional DB across the world
Reverse Engineering: I love the way we can import an SQL file containing schema meta data and generate ER diagram out of it. This is specifically useful if you are implementing erwin Data Modeler for an existing database.
Forward Engineering: We use this feature very frequently. Where we do database changes in our physical and logical data models and then generate deployment scripts for the changes made.
Physical vs Logical Models: I like to have my database model split into physical and logical models and at the same time still linked to each other. Any changes you make to logical model or physical model shows up in the other.
Generous free and trial plan for evaluation or test purposes.
New versions of MongoDB are able to be deployed with Atlas as soon as they're released—deploying recent versions to other services can be difficult or risky.
As the key supporters of the open source MongoDB project, the service runs in a highly optimized and performant manner, making it much easier than having to do the work internally.
For someone new, it could be challenging using MongoDB Atlas. Some official video tutorials could help a lot
Pricing calculation is sometimes misleading and unpredictable, maybe better variables could be used to provide better insights about the cost
Since it is a managed service, we have limited control over the instances and some issues we faced we couldn't;'t know about without reaching out to the support and got fixed from their end. So more control over the instance might help
The way of managing users and access is somehow confusing. Maybe it could be placed somewhere easy to access
I had a lot of experience using erwin Data Modeler for designing data models. I think it's pretty intuitive and easy to use. It has enough features to represent your database requirements in form of a model.
I would give it 8. Good stuff: 1. Easy to use in terms of creating cluster, integrating with Databases, setting up backups and high availability instance, using the monitors they provide to check cluster status, managing users at company level, configure multiple replicas and cross region databases. Things hard to use: 1. roles and permissions at DB level. 2. Calculate expected costs
CA customer support and our account manager have been able to support us with any issues that we have had, from managing our serial keys to issues we logged tickets to resolve. There are aspects of key management that have made it difficult over the years but support usually has worked with us.
We love MongoDB support and have great relationship with them. When we decided to go with MongoDB Atlas, they sent a team of 5 to our company to discuss the process of setting up a Mongo cluster and walked us through. when we have questions, we create a ticket and they will respond very quickly
Not listed, but I've only used alternatives built into something like the Squirrel SQL editor. That one is semi-functional but lacking many features and, in some instances, just plain wrong. The only pro there is that it's freely available and works over ODBC. I've tried some of the other free ones like Creately but didn't have much success.
MongoDB is a great product but on premise deployments can be slow. So we turned to Atlas. We also looked at Redis Labs and we use Redis as our side cache for app servers. But we love using MongoDB Atlas for cloud deployments, especially for prototyping because we can get started immediately. And the cost is low and easy to justify.