Amazon TensorFlow enables developers to quickly and easily get started with deep learning in the cloud.
N/A
Jupyter Notebook
Score 8.6 out of 10
N/A
Jupyter Notebook is an open-source web application that allows users to create and share documents containing live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, data visualization, and machine learning. It supports over 40 programming languages, and notebooks can be shared with others using email, Dropbox, GitHub and the Jupyter Notebook Viewer. It is used with JupyterLab, a web-based IDE for…
N/A
Pricing
Amazon Tensor Flow
Jupyter Notebook
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Amazon Tensor Flow
Jupyter Notebook
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Amazon Tensor Flow
Jupyter Notebook
Features
Amazon Tensor Flow
Jupyter Notebook
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Amazon Tensor Flow
-
Ratings
Jupyter Notebook
9.0
22 Ratings
7% above category average
Connect to Multiple Data Sources
00 Ratings
10.022 Ratings
Extend Existing Data Sources
00 Ratings
10.021 Ratings
Automatic Data Format Detection
00 Ratings
8.514 Ratings
MDM Integration
00 Ratings
7.415 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Amazon Tensor Flow
-
Ratings
Jupyter Notebook
7.0
22 Ratings
18% below category average
Visualization
00 Ratings
6.022 Ratings
Interactive Data Analysis
00 Ratings
8.022 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Amazon Tensor Flow
-
Ratings
Jupyter Notebook
9.5
22 Ratings
16% above category average
Interactive Data Cleaning and Enrichment
00 Ratings
10.021 Ratings
Data Transformations
00 Ratings
10.022 Ratings
Data Encryption
00 Ratings
8.514 Ratings
Built-in Processors
00 Ratings
9.314 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Amazon Tensor Flow
-
Ratings
Jupyter Notebook
9.3
22 Ratings
10% above category average
Multiple Model Development Languages and Tools
00 Ratings
10.021 Ratings
Automated Machine Learning
00 Ratings
9.218 Ratings
Single platform for multiple model development
00 Ratings
10.022 Ratings
Self-Service Model Delivery
00 Ratings
8.020 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
A well-suited scenario for using AWS Tensor Flow is when having a project with a geographically dispersed team, a client overseas and large data to use for training. AWS Tensor Flow is less appropriate when working for clients in regions where it hasn't been allowed yet for use. Since smaller clients are in regions where AWS Tensor Flow hasn't been allowed for use, and those clients traditionally don't have enough hardware, this situation deters a wider use of the tool.
I've created a number of daisy chain notebooks for different workflows, and every time, I create my workflows with other users in mind. Jupiter Notebook makes it very easy for me to outline my thought process in as granular a way as I want without using innumerable small. inline comments.
Amazon Elastic Compute Cloud (EC2) allows resizable compute capacity in the cloud, providing the necessary elasticity to provide services for both, small and medium-sized businesses.
Tensor Flow allows us to train our models much faster than in our on-premise equipment.
Most of the pre-trained models are easy to adapt to our clients' needs.
SageMaker isn't available in all regions. This is complicated for some clients overseas.
For larger instances, when using a GPU, it takes a while to talk to a customer service representative to ask for a limit increase. Given this, it's recommendable to ask in advance for a limit increase in more expensive and larger cases; otherwise, SageMaker will set the limit to zero by default.
Since the data has to be stored in S3 and copied to training, it doesn't allow to test and debug locally. Therefore, we have to wait a lot to check everything after every trail.
Need more Hotkeys for creating a beautiful notebook. Sometimes we need to download other plugins which messes [with] its default settings.
Not as powerful as IDE, which sometimes makes [the] job difficult and allows duplicate code as it get confusing when the number of lines increases. Need a feature where [an] error comes if duplicate code is found or [if a] developer tries the same function name.
Jupyter is highly simplistic. It took me about 5 mins to install and create my first "hello world" without having to look for help. The UI has minimalist options and is quite intuitive for anyone to become a pro in no time. The lightweight nature makes it even more likeable.
Microsoft Azure is better than Amazon Tensor Flow because it provides easier and pre-built capabilities such as Anomaly Detection, Recommendation, and Ranking. AWS is better than IBM Watson ML Studio because it has direct and prebuilt clustering capabilities AWS, like IBM Watson ML Studio, has powerful built-in algorithms, providing a stronger platform when comparing it with MS Azure ML Services and Google ML Engine.
With Jupyter Notebook besides doing data analysis and performing complex visualizations you can also write machine learning algorithms with a long list of libraries that it supports. You can make better predictions, observations etc. with it which can help you achieve better business decisions and save cost to the company. It stacks up better as we know Python is more widely used than R in the industry and can be learnt easily. Unlike PyCharm jupyter notebooks can be used to make documentations and exported in a variety of formats.