Microsoft Azure Cosmos DB is Microsoft's Big Data analysis platform. It is a NoSQL database service and is a replacement for the earlier DocumentDB NoSQL database.
N/A
IBM Cloudant
Score 7.4 out of 10
N/A
Cloudant is an open source non-relational, distributed database service that requires zero-configuration. It's based on the Apache-backed CouchDB project and the creator of the open source BigCouch project.
Cloudant's service provides integrated data management, search, and analytics engine designed for web applications. Cloudant scales your database on the CouchDB framework and provides hosting, administrative tools, analytics and commercial support for CouchDB and BigCouch.
Cloudant is often…
$1
per month per GB of storage above the included 20 GB
Pricing
Azure Cosmos DB
IBM Cloudant
Editions & Modules
No answers on this topic
Standard
$1
per month per GB of storage above the included 20 GB
Standard
$75
per month 100 reads/second ; 50 writes/second ; 5 global queries/second
Lite
Free
20 reads/second ; 10 writes/second ; 5 global queries / second ; 1 GB of storage capacity
Standard
Included
per month 20 GB of storage
Offerings
Pricing Offerings
Azure Cosmos DB
IBM Cloudant
Free Trial
No
Yes
Free/Freemium Version
No
Yes
Premium Consulting/Integration Services
No
Yes
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Azure Cosmos DB
IBM Cloudant
Considered Both Products
Azure Cosmos DB
No answer on this topic
IBM Cloudant
Verified User
General Manager
Chose IBM Cloudant
MongoDB Atlas and Azure Cosmos DB are the closest competitors we found with Cloudant, especially in terms of fixed pricing and having a GUI for easy viewing and quick edits of data. Cloudant's pricing model flat out beats MongoDB Atlas' in terms of how easy it would be to …
Like any NoSQL database, whether it's MongoDB or not, it's best suited for unstructured data. It's also well suited for storing raw data before processing it and performing any type of ETL on the data.
Our organization found Cloudant most suitable if One, a fixed pricing structure would make the most sense, for example in a situation where the project Cloudant is being used in makes its revenue in procurement or fixed retainer — thus the predictability of costs is paramount; Two, where you need to frequently edit the data and/or share access to the query engine to non-engineers — this is where the GUI shines.
Scalable Instantly and automatically serverless database for any large scale business.
Quick access and response to data queries due to high speed in reading and writing data
Create a powerful digital experience for your customers with real-time offers and agile access to DB with super-fast analysis and comparison for best recommendation
We had a thought time migrating from traditional DBs to Cosmos. Azure should provide a seamless platform for the migration of data from on-premises to cloud.
It's efficient, easy to scale, and works. We do have to do a bit of administration, but less now than when we started with this a couple of years ago. Microsoft continues to improve its self-management capability.
the flexibility of NoSQL allow us to modify and upgrade our apps very fast and in a convenient way. Having the solution hosted by IBM is also giving us the chance to focus on features and the improvement of our apps. It's one thing less to be worried about
It has very good compatibility and adaptability with other APIs and developers can safely create new apps because it is compatible with various tools and can be easily managed and run under the cloud, and in terms of security, it is one of the best of its kind, which is very powerful and excellent.
It's mostly just a straight forward API to a data store. I knock one off for the full text search thing, but I don't need it much anyways. Also, the dashboard UI they give is pretty nice to use. It provides syntax-highlighting for writing views and queries are easy to test. I wish other DBs had a UI like this.
it is a highly available solution in the IBM cloud portfolio and hence we have never had any issues with the data base being available - we also do continuous replication to be on the safer side just in case some thing goes awry. We also perform twice a year disaster recovery tests.
very easy to get started and is very developer friendly given that it uses couchDB analytics. It is a cloud based solution and hence there is no hardware investment in a server and staging the server to get started and the associated delays/bureaucracy involved to get started. Good documentation is also available.
Microsoft is the best when it comes to after-sales support. They have a well-structured training and knowledge base portal that anyone can use. They are usually quick to respond to cases and are on point for on-call support. I have no complaints from a support standpoint. Pretty happy with the support.
online resources are good enough to understand but there is nothing like testing. In our case, we discovered some not documented behavior that we take in count now. Also, the experience in NodeJs is critical. Also, take in count that most of the "good practices" with cloudant are not in online courses but in blogs and pages from independent developers
Cosmos DB is unique in the industry as a true multi-model, cloud-native database engine that comes with solutions for geo-redundancy, multi-master writes, (globally!) low latency, and cost-effective hosting built in. I've yet to see anything else that even comes close to the power that Cosmos DB packs into its solution. The simplicity and tooling support are nice bonus features as well.
The feature-set, including security, is very comparable. Overall, IBM's services added to the product are mature and stable, although product support and engineers could be a little better. Global availability is improving, and Disaster Recover Capabilities are great. Overall, it's very comparable to MongoDB as a DBaaS offer, available globally and with great documentation.
The service scales incredibly well. As you would expect from CloudDB and IBM combination. The only reason I wouldn't score it a 10 is the fact that document trees can get nested and nested very quickly if you are attempting to do very complex datasets. Which makes your code that much more complex to deal. Its very possible we could find a solution to this problem with better database planning to begin with, but one of the reasons we chose a service over a self-hosted solution was so we could set it up quick and forget about it. So we weren't going to dedicate a team to architecture optimization.