Databricks in San Francisco offers the Databricks Lakehouse Platform (formerly the Unified Analytics Platform), a data science platform and Apache Spark cluster manager. The Databricks Unified Data Service aims to provide a reliable and scalable platform for data pipelines, data lakes, and data platforms. Users can manage full data journey, to ingest, process, store, and expose data throughout an organization. Its Data Science Workspace is a collaborative environment for practitioners to run…
$0.07
Per DBU
Db2
Score 8.5 out of 10
N/A
DB2 is a family of relational database software solutions offered by IBM. It includes standard Db2 and Db2 Warehouse editions, either deployable on-cloud, or on-premise.
IBM Db2 suite is an object-relational database, and due to its strong fundamentals, it stands apart from the rest of the products. With the rich user experience it provides, customers most likely use this product. It also provides a wide range of features like Disaster recovery …
Medium to Large data throughput shops will benefit the most from Databricks Spark processing. Smaller use cases may find the barrier to entry a bit too high for casual use cases. Some of the overhead to kicking off a Spark compute job can actually lead to your workloads taking longer, but past a certain point the performance returns cannot be beat.
I have primarily used it as the basis for a SIS - but I have migrated more than a few systems from there database systems to DB2 (Filemaker, MySQL, etc.). DB2 does have a better structural approach, as opposed to Filemaker, which allows for more data consistency, but this can also lead to an inflexibility that can sometimes be counterintuitive when attempting to compensate for the flexibility of the work environment as Schools tend to have an all in one approach.
Connect my local code in Visual code to my Databricks Lakehouse Platform cluster so I can run the code on the cluster. The old databricks-connect approach has many bugs and is hard to set up. The new Databricks Lakehouse Platform extension on Visual Code, doesn't allow the developers to debug their code line by line (only we can run the code).
Maybe have a specific Databricks Lakehouse Platform IDE that can be used by Databricks Lakehouse Platform users to develop locally.
Visualization in MLFLOW experiment can be enhanced
The DB2 database is a solid option for our school. We have been on this journey now for 3-4 years so we are still adapting to what it can do. We will renew our use of DB2 because we don’t see. Major need to change. Also, changing a main database in a school environment is a major project, so we’ll avoid that if possible.
Because it is an amazing platform for designing experiments and delivering a deep dive analysis that requires execution of highly complex queries, as well as it allows to share the information and insights across the company with their shared workspaces, while keeping it secured.
in terms of graph generation and interaction it could improve their UI and UX
You have to be well versed in using the technology, not only from a GUI interface but from a command line interface to successfully use this software to its fullest.
I have never had DB2 go down unexpectedly. It just works solidly every day. When I look at the logs, sometimes DB2 has figured out there was a need to build an index. Instead of waiting for me to do it, the database automatically created the index for me. At my current company, we have had zero issues for the past 8 years. We have upgrade the server 3 times and upgraded the OS each time and the only thing we saw was that DB2 got better and faster. It is simply amazing.
The performances are exceptional if you take care to maintain the database. It is a very powerful tool and at the same time very easy to use. In our installation, we expect a DB machine on the mainframe with access to the database through ODBC connectors directly from branch servers, with fabulous end users experience.
One of the best customer and technology support that I have ever experienced in my career. You pay for what you get and you get the Rolls Royce. It reminds me of the customer support of SAS in the 2000s when the tools were reaching some limits and their engineer wanted to know more about what we were doing, long before "data science" was even a name. Databricks truly embraces the partnership with their customer and help them on any given challenge.
Easily the best product support team. :) Whenever we have questions, they have answered those in a timely manner and we like how they go above and beyond to help.
The most important differentiating factor for Databricks Lakehouse Platform from these other platforms is support for ACID transactions and the time travel feature. Also, native integration with managed MLflow is a plus. EMR, Cloudera, and Hortonworks are not as optimized when it comes to Spark Job Execution. Other platforms need to be self-managed, which is another huge hassle.
DB2 was more scalable and easily configurable than other products we evaluated and short listed in terms of functionality and pricing. IBM also had a good demo on premise and provided us a sandbox experience to test out and play with the product and DB2 at that time came out better than other similar products.
By using DB2 only to support my IzPCA activities, my knowledge here is somewhat limited.
Anyway, from what I was able to understand, DB2 is extremely scallable.
Maybe the information below could serve as an example of scalability.
Customer have an huge mainframe environment, 13x z15 CECs, around 80 LPARs, and maybe more than 50 Sysplexes (I am not totally sure about this last figure...)
Today we have 7 IzPCA databases, each one in a distinct Syplex.
Plans are underway to have, at the end, an small LPAR, with only one DB2 sub-system, and with only one database, then transmit the data from a lot of other LPARs, and then process all the data in this only one database.
The IzPCA collect process (read the data received, manipulate it, and insert rows in the tables) today is a huge process, demanding many elapsed hours, and lots of CPU.
Almost 100% of the tables are PBR type, insert jobs run in parallel, but in 4 of the 7 database, it is a really a huge and long process.
Combining the INSERTs loads from the 7 databases in only one will be impossible.......,,,,
But, IzPCA recently introduced a new feature, called "Continuous Collector".
By using that feature, small amounts of data will be transmited to the central LPAR at every 5 minutes (or even less), processed immediately,in a short period of time, and withsmall use of CPU, instead of one or two transmissions by day, of very large amounts of data and the corresponding collect jobs occurring only once or twice a day, with long elapsed times, and huge comsumption of CPU
I suspect the total CPU seconds consumed will be more or less the same in both cases, but in the new method it will occur insmall bursts many times a day!!
There is great value the solution brings when it comes to building stored procedures and ongoing tasks that allows our team to streamlines processes.
The platform has allowed us to see value by providing a solution for data structuring and data hygiene which prevents deduplication of data and lowers costs
With the integration capabilities it allows our analytics team to more seamlessly create highly visible dashboards that see directly into the data and pinpoint areas that need attention.