Google Cloud AI provides modern machine learning services, with pre-trained models and a service to generate tailored models.
N/A
Jupyter Notebook
Score 8.5 out of 10
N/A
Jupyter Notebook is an open-source web application that allows users to create and share documents containing live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, data visualization, and machine learning. It supports over 40 programming languages, and notebooks can be shared with others using email, Dropbox, GitHub and the Jupyter Notebook Viewer. It is used with JupyterLab, a web-based IDE for…
N/A
Pricing
Google Cloud AI
Jupyter Notebook
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Google Cloud AI
Jupyter Notebook
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Google Cloud AI
Jupyter Notebook
Features
Google Cloud AI
Jupyter Notebook
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Google Cloud AI
-
Ratings
Jupyter Notebook
9.0
22 Ratings
7% above category average
Connect to Multiple Data Sources
00 Ratings
10.022 Ratings
Extend Existing Data Sources
00 Ratings
10.021 Ratings
Automatic Data Format Detection
00 Ratings
8.514 Ratings
MDM Integration
00 Ratings
7.415 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Google Cloud AI
-
Ratings
Jupyter Notebook
7.0
22 Ratings
18% below category average
Visualization
00 Ratings
6.022 Ratings
Interactive Data Analysis
00 Ratings
8.022 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Google Cloud AI
-
Ratings
Jupyter Notebook
9.5
22 Ratings
16% above category average
Interactive Data Cleaning and Enrichment
00 Ratings
10.021 Ratings
Data Transformations
00 Ratings
10.022 Ratings
Data Encryption
00 Ratings
8.514 Ratings
Built-in Processors
00 Ratings
9.314 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Google Cloud AI
-
Ratings
Jupyter Notebook
9.3
22 Ratings
10% above category average
Multiple Model Development Languages and Tools
00 Ratings
10.021 Ratings
Automated Machine Learning
00 Ratings
9.218 Ratings
Single platform for multiple model development
00 Ratings
10.022 Ratings
Self-Service Model Delivery
00 Ratings
8.020 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Google Cloud AI is a wonderful product for companies that are looking to offset AI and ML processing power to cloud APIs, and specific Machine Learning use cases to APIs as well. For companies that are looking for very specific, customized ML capabilities that require lots of fine-tuning, it may be better to do this sort of processing through open-source libraries locally, to offset the costs that your company might incur through this API usage.
I've created a number of daisy chain notebooks for different workflows, and every time, I create my workflows with other users in mind. Jupiter Notebook makes it very easy for me to outline my thought process in as granular a way as I want without using innumerable small. inline comments.
Some of the build in/supported AI modules that can be deployed, for example Tensorflow, do not have up-to-date documentation so what is actually implemented in the latest rev is not what is mentioned in the documentation, resulting in a lot of debugging time.
Customization of existing modules and libraries is harder and it does need time and experience to learn.
Google Cloud AI can do a better job in providing better support for Python and other coding languages.
Need more Hotkeys for creating a beautiful notebook. Sometimes we need to download other plugins which messes [with] its default settings.
Not as powerful as IDE, which sometimes makes [the] job difficult and allows duplicate code as it get confusing when the number of lines increases. Need a feature where [an] error comes if duplicate code is found or [if a] developer tries the same function name.
We are extremely satisfied with the impact that this tool has made on our organization since we have practically moved from crawling to walking in the process of generating information for our main task to investigate in the field through interviews. With the audio to text translation tool there is a difference from heaven to earth in the time of feeding our internal data.
I give 8 because although it´s a tool I really enjoy working with, I think Google Cloud AI's impact is just starting, therefore I can visualize a lot/space of improvements in this tool. As an example the application of AI in international environments with different languages is a good example of that space/room to improve.
Jupyter is highly simplistic. It took me about 5 mins to install and create my first "hello world" without having to look for help. The UI has minimalist options and is quite intuitive for anyone to become a pro in no time. The lightweight nature makes it even more likeable.
Every rep has been nice and helpful whenever I call for help. One of the systems froze and wouldn't start back up and with the help of our assigned rep we got everything back up in a timely manner. This helped us not lose customers and money.
In fact, you only need the basic tech knowledge to do a Google search. You need to know if your organization requires it or not,. our organization required it. And that is why we acquired it and solved a need that we had been suffering from. This is part of the modernization of an organization and part of its growth as a company.
These are basic tools although useful, you can't simply ignore them or say they are not good. These tools also have their own values. But, Yes, Google is an advanced one, A king in the field of offering a wide range of tools, quality, speed, easy to use, automation, prebuild, and cost-effective make them a leader and differentiate them from others.
With Jupyter Notebook besides doing data analysis and performing complex visualizations you can also write machine learning algorithms with a long list of libraries that it supports. You can make better predictions, observations etc. with it which can help you achieve better business decisions and save cost to the company. It stacks up better as we know Python is more widely used than R in the industry and can be learnt easily. Unlike PyCharm jupyter notebooks can be used to make documentations and exported in a variety of formats.
Artificial intelligence and automation seems 'free' and draws the organization in, without seeming to spend a lot of funds. A positive impact, but who is actually tracking the cost?
We want our employees to use it, but many resist technology or are scared of it, so we need a way to make them feel more comfortable with the AI.
The ROI seems positive since we are full in with Google, and the tools come along with the functionality.