Google Cloud SQL is a database-as-a-service (DBaaS) with the capability and functionality of MySQL.
$0
per core hour
MongoDB Atlas
Score 8.2 out of 10
N/A
MongoDB Atlas is the company's automated managed cloud service, supplying automated deployment, provisioning and patching, and other features supporting database monitoring and optimization.
$57
per month
Pricing
Google Cloud SQL
MongoDB Atlas
Editions & Modules
License - Express
$0
per core hour
License - Web
$0.01134
per core hour
Storage - for backups
$.08
per month per GB
HA Storage - for backups
$.08
per month per GB
Storage - HDD storage capacity
$.09
per month per GB
License - Standard
$0.13
per core hour
Storage - SSD storage capacity
$.17
per month per GB
HA Storage - HDD storage capacity
$.18
per month per GB
HA Storage - SSD storage capacity
$.34
per month per GB
License - Enterprise
$0.47
per core hour
Memory
$5.11
per month per GB
HA Memory
$10.22
per month per GB
vCPUs
$30.15
per month per vCPU
HA vCPUs
$60.30
per month per vCPU
Dedicated Clusters
$57
per month
Dedicated Multi-Reigon Clusters
$95
per month
Shared Clusters
Free
Offerings
Pricing Offerings
Google Cloud SQL
MongoDB Atlas
Free Trial
Yes
No
Free/Freemium Version
No
Yes
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
Pricing varies with editions, engine, and settings, including how much storage, memory, and CPU you provision. Cloud SQL offers per-second billing.
Given this is a hosted solution, database a service it helps in removing the effort of maintaining these databases manually. Eases out the pain of upgrading, applying security patches and keeping things running without having to worry about missed changes. The database can be …
- AWS RDS and Aurora is a just a notch above Google Cloud SQL as it provide boost in performance when required - Google Cloud SQL Mysql Engine is Cloud based and better than native Mysql as it provides management of the server out of box - Compared to a MongoDB it has a low …
In general, they all compete against each other, and each solution has its own advantages and disadvantages. While MongoDB Atlas was the way to go for some cases, however, other databases were more fit for some services that MongoDB Atlas, especially if they were managed by us, …
Does what it promises well, for instance, as a sidecar for the main enterprise data warehouse. However, I would not recommend using it as the main data warehouse, particularly due to the heavy business logic, as other dedicated tools are more suitable for ensuring scalable operations in terms of change management and multi-developer adjustments.
It is good if you: 1. Have unstructured data that you need to save (since it is NoSQL DB) 2. You don't have time or knowledge to setup the MongoDB Atlas, the managed service is the way to go (Atlas) 3. If you need a multi regional DB across the world
Generous free and trial plan for evaluation or test purposes.
New versions of MongoDB are able to be deployed with Atlas as soon as they're released—deploying recent versions to other services can be difficult or risky.
As the key supporters of the open source MongoDB project, the service runs in a highly optimized and performant manner, making it much easier than having to do the work internally.
For someone new, it could be challenging using MongoDB Atlas. Some official video tutorials could help a lot
Pricing calculation is sometimes misleading and unpredictable, maybe better variables could be used to provide better insights about the cost
Since it is a managed service, we have limited control over the instances and some issues we faced we couldn't;'t know about without reaching out to the support and got fixed from their end. So more control over the instance might help
The way of managing users and access is somehow confusing. Maybe it could be placed somewhere easy to access
As with other cloud tools, users must learn a new terminology to navigate the various tools and configurations, and understand Google Cloud's configuration structure to perform even the most basic operations. So the learning curve is quite steep, but after a few months, it gets easier to maintain.
I would give it 8. Good stuff: 1. Easy to use in terms of creating cluster, integrating with Databases, setting up backups and high availability instance, using the monitors they provide to check cluster status, managing users at company level, configure multiple replicas and cross region databases. Things hard to use: 1. roles and permissions at DB level. 2. Calculate expected costs
GCP support in general requires a support agreement. For small organizations like us, this is not affordable or reasonable. It would help if Google had a support mechanism for smaller organizations. It was a steep learning curve for us because this was our first entry into the cloud database world. Better documentation also would have helped.
We love MongoDB support and have great relationship with them. When we decided to go with MongoDB Atlas, they sent a team of 5 to our company to discuss the process of setting up a Mongo cluster and walked us through. when we have questions, we create a ticket and they will respond very quickly
Unlike other products, Google Cloud SQL has very flexible features that allow it to be selected for a free trial account so that the product can be analyzed and tested before purchasing it. Integration capabilities with most of the web services tools are easier regarding Google Cloud SQL with its nature and support.
MongoDB is a great product but on premise deployments can be slow. So we turned to Atlas. We also looked at Redis Labs and we use Redis as our side cache for app servers. But we love using MongoDB Atlas for cloud deployments, especially for prototyping because we can get started immediately. And the cost is low and easy to justify.
With managed database system, it has given us near 100% data availability
It has also improved web layer experience with faster processing and authentication using database fields
Google Cloud SQL also gels up well with Google Analytics and other analytics systems for us to join up different data points and process them for deeper dives and analysis