IBM Watson Discovery vs. IBM watsonx.ai

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
IBM Watson Discovery
Score 9.1 out of 10
N/A
IBM offers Watson Discovery, a natural language processing (NLP) application with options to measure sentiment, detect entities, semantic roles, and other concepts.N/A
IBM watsonx.ai
Score 8.7 out of 10
N/A
Watsonx.ai is part of the IBM watsonx platform that brings together new generative AI capabilities, powered by foundation models, and traditional machine learning into a studio spanning the AI lifecycle. Watsonx.ai can be used to train, validate, tune, and deploy generative AI, foundation models, and machine learning capabilities, and build AI applications with less time and data.
$0
Pricing
IBM Watson DiscoveryIBM watsonx.ai
Editions & Modules
No answers on this topic
Free Trial
$0
ML functionality (20 CUH limit /month); Inferencing (50,000 tokens / month)
Standard
$1,050
Monthly tier fee; additional usage based fees
Essentials
Contact Sales
Usage based fees
Offerings
Pricing Offerings
IBM Watson DiscoveryIBM watsonx.ai
Free Trial
YesYes
Free/Freemium Version
NoYes
Premium Consulting/Integration Services
YesYes
Entry-level Setup FeeNo setup feeNo setup fee
Additional DetailsPricing for watsonx.ai includes: model inference per 1000 tokens and ML tools and ML runtimes based on capacity unit hours.
More Pricing Information
Community Pulse
IBM Watson DiscoveryIBM watsonx.ai
Features
IBM Watson DiscoveryIBM watsonx.ai
AI Development
Comparison of AI Development features of Product A and Product B
IBM Watson Discovery
-
Ratings
IBM watsonx.ai
5.5
1 Ratings
1% above category average
Machine learning frameworks00 Ratings5.51 Ratings
Data management00 Ratings4.51 Ratings
Data monitoring and version control00 Ratings4.51 Ratings
Automated model training00 Ratings4.51 Ratings
Managed scaling00 Ratings6.41 Ratings
Model deployment00 Ratings6.41 Ratings
Security and compliance00 Ratings6.41 Ratings
Best Alternatives
IBM Watson DiscoveryIBM watsonx.ai
Small Businesses
Yext
Yext
Score 8.9 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Medium-sized Companies
Guru
Guru
Score 9.5 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Enterprises
Guru
Guru
Score 9.5 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
IBM Watson DiscoveryIBM watsonx.ai
Likelihood to Recommend
9.0
(26 ratings)
9.1
(33 ratings)
Likelihood to Renew
9.1
(2 ratings)
6.4
(1 ratings)
Usability
5.9
(3 ratings)
7.8
(6 ratings)
Support Rating
10.0
(2 ratings)
-
(0 ratings)
Ease of integration
-
(0 ratings)
6.4
(2 ratings)
Product Scalability
-
(0 ratings)
9.1
(1 ratings)
User Testimonials
IBM Watson DiscoveryIBM watsonx.ai
Likelihood to Recommend
IBM
Overall, IBM Watson Discovery is an amazing technology that we use with our clients to address various business problems, but the biggest challenge has always been about ingesting, analyzing, enriching, and searching huge collections of documents and allowing our end users and SMEs to be able to search for what they need to reduce the time and efforts spent daily on a manual search through various collections of documents. We have successfully managed to reduce manual work by over 80%, and now our SMEs are being used for the skills they have to gather insights rather than do manual work.
Read full review
IBM
I have built a code accelerator tool for one of the IBM product implementation. Although there was a heavy lifting at the start to train the model on specifics of the packaged solution library and ways of working; the efficacy of the model is astounding. Having said that, watsonx.ai is very well suited for customer service automation, healthcare data analytics, financial fraud detection, and sentiment analysis kind of projects. The Watsonx.ai look and feel is little confusing but I understand over a period of time , it will improve dramatically as well. I do feel that Watsonx.ai has certain limitations from cross-platform deployment flexibility. If an organization is deeply invested in a multi-cloud environment, Watson's integration on other cloud platforms may not be seamless comported to other AI platforms.
Read full review
Pros
IBM
  • It is an excellently fast platform with documents and the answers to queries.
  • With automation learning beneficial as it saves time.
  • When searching for a document, everything stays located and easy to find.
  • Acceptance of various documents.
  • It has a quite comfortable Technical support, always available when required.
Read full review
IBM
  • It allows specialists to apply several base models for specific subtasks in the field of NLP.
  • Gives the availability of many models developed for AI enhancement for different solutions.
  • Has incorporated functionality for data governance and security to support access to AI tools by multiple users.
Read full review
Cons
IBM
  • I believe AI should be more flexible about providing data. However, it's understandable that you need to provide the details you need in a more specific and detailed way.
  • The interface could use more tweaking. Being new to the program, it was kind of hard to navigate.
  • Luckily, there was a customized feature of the dashboard that I could set up, and having something that you know where you are placed always feels familiar and comfortable.
Read full review
IBM
  • IBM watsonx.ai is expensive than other platforms.
  • Limited integraions though it has many but still some tools integrations not there for medical usecase
  • Its little difficult to learn as right now not many open reseouces
  • Community is not that strong to get any answer
Read full review
Likelihood to Renew
IBM
No answers on this topic
IBM
I still don't have enough experience, but i have seen a lot of demos and i have made some real world scenarios and so far so long every thing looks fine. I was at IBM Think 2025 and IBM TechXchange 2025 and the labs were really usefull and simple to understand.
Read full review
Usability
IBM
IBM Watson Discovery has the best user capabilities and easily transform business decision-making portfolio. The automation system saves time used in data analysis as opposed to manual research that consumes a lot of time. The visualization across the dashboard enables my team to interpret complex data and use it to make reliable marketing decisions.
Read full review
IBM
I needed some time to understand the different parts of the web UI. It was slightly overwhelming in the beginning. However, after some time, it made sense, and I like the UI now. In terms of functionality, there are many useful features that make your life easy, like jumping to a section and giving me a deployment space to deploy my models easily.
Read full review
Support Rating
IBM
Similar to all IBM Watson and Salesforce product solutions, the overall support would be a 10/10. Their provided FAQ's help with frequently experienced issues and if still unable to figure something out, their customer service representatives are always super responsive. With instant chat functions available, it is easy to ask a quick question rather than sitting on hold.
Read full review
IBM
I still don't have enough experience, but i have seen a lot of demos and i have made some real world scenarios and so far so long every thing looks fine. I was at IBM Think 2025 and IBM TechXchange 2025 and the labs were really usefull and simple to understand.
Read full review
Alternatives Considered
IBM
Discovery differs from its competitors due to the better ease of implementation and the high level of natural language recognition, it is equal in integration resources such as API and workflow or process pipeline, but it loses in the price for a high volume of documents and/or research. If you own or plan to use other services from the IBM Watson family, there is no doubt that Watson discovery is your best option. Another important point is if you plan to use a cloud or on-premise service (local server or private cloud).
Read full review
IBM
IBM watsonx.ai has been far superior to that of Chat GPT AI. the UI elements prompt responses and overall execution of the AI was much better and more accurate compared to the competition. I can not recommend using this platform enough. Great job IBM. I hope the team behind this project continues to grow and prosper.
Read full review
Scalability
IBM
No answers on this topic
IBM
I still don't have enough experience, but i have seen a lot of demos and i have made some real world scenarios and so far so long every thing looks fine. I was at IBM Think 2025 and IBM TechXchange 2025 and the labs were really usefull and simple to understand.
Read full review
Return on Investment
IBM
  • We find its Enterprise plan expensive for a country of LATAM. For US or Europe based businesses, looks great.
  • A Big Data and massive queries based company would find the service expensive. Maybe a flat price plan would be helpful.
  • Have you thought in making a cheaper plan where you take the learning from your customer's data to enrich your AI tool?
Read full review
IBM
  • Time saving to set up the infrastructure - without watsonx.ai we would have had to set up everything individually
  • The first point translates directly into cost savings
  • The compliance aspect was a game changer for us and provided us with the confidence to focus all our efforts only on IBM watsonx.ai
Read full review
ScreenShots

IBM watsonx.ai Screenshots

Screenshot of the foundation models available in watsonx.ai. Clients have access to IBM selected open source models from Hugging Face, as well as other third-party models, and a family of IBM-developed foundation models of different sizes and architectures.Screenshot of the Prompt Lab in watsonx.ai, where AI builders can work with foundation models and build prompts using prompt engineering techniques in watsonx.ai to support a range of Natural Language Processing (NLP) type tasks.Screenshot of the Tuning Studio in watsonx.ai, where AI builders can tune foundation models with labeled data for better performance and accuracy.Screenshot of the data science toolkit in watsonx.ai where AI builders can build machine learning models automatically with model training, development, visual modeling, and synthetic data generation.