Apache Airflow is an open source tool that can be used to programmatically author, schedule and monitor data pipelines using Python and SQL. Created at Airbnb as an open-source project in 2014, Airflow was brought into the Apache Software Foundation’s Incubator Program 2016 and announced as Top-Level Apache Project in 2019. It is used as a data orchestration solution, with over 140 integrations and community support.
N/A
Matillion
Score 8.3 out of 10
N/A
Matillion is a data pipeline platform used to build and manage pipelines. Matillion empowers data teams with no-code and AI capabilities to be more productive, integrating data wherever it lives and delivering data that’s ready for AI and analytics.
$2.50
Pay as you go per user
Pricing
Apache Airflow
Matillion
Editions & Modules
No answers on this topic
Developer: For Individuals
$2.50/credit
Pay as you go per user
Basic
$1000
per month 500 prepaid credits (additional credits: $2.18/credit)
Advanced
$2000
per month 750 prepaid credits (additional credits: $2.73/credit)
Enterprise
Request a Quote
Offerings
Pricing Offerings
Apache Airflow
Matillion
Free Trial
No
Yes
Free/Freemium Version
Yes
No
Premium Consulting/Integration Services
No
Yes
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
Billed directly via cloud marketplace on an hourly basis, with annual subscriptions available depending on the customer's cloud data warehouse provider.
Matillion is much easier to implement and maintain. As a result, we use Matillion for 95% of our data pipelines and only use Apache Airflow when necessary.
My manager selected Million based on his previous work experience. He believes it is easy to use and maintain, cheaper than competitors, and suitable for our use case.
The Matillion selection was not my decision. But I think it's a good enough choice. It is especially valuable that the team can learn Matillion easily and that the project can be understood by the entire team with the visual environment instead of complex ETLs.
Removes most of the complexity around setting up and preparing things. If you could describe with words what needs to be done to move data from A to B, the implementation in Matillion would probably be the most similar in terms of simplicity of understanding what you are doing …
Matillion is a good tool for integrating multiple clouds. Informatica has been a market standard for many years, it provides multiple capabilities for data governance, data quality, etc. However, Informatica is pretty expensive compared to Matillion. Also, Matillion is more …
dbt is great for engineers and those comfortable with coding. Matillion is the low-code alternative with a huge emphasis on collaboration with ease. You don't need to checkout a branch, clone, pull, merge etc. in order to help your colleague with a data pipeline. The simple …
Matillion ran circles around Stitch and Striim both in functionality, setup, and performance. There was no real comparison. Fivetran massively outperforms Matillion in pretty much every facet of the production from setup, maintenance, visibility, and usability. It already …
When compared with other technologies , Matillion was cost effective , more scalable and flexible in terms of complexity and components. The licensing cost of Matillion was also less and the flexibility with components helps in implementing complex business logics. The training …
Airflow is well-suited for data engineering pipelines, creating scheduled workflows, and working with various data sources. You can implement almost any kind of DAG for any use case using the different operators or enforce your operator using the Python operator with ease. The MLOps feature of Airflow can be enhanced to match MLFlow-like features, making Airflow the go-to solution for all workloads, from data science to data engineering.
Great: Need to query simpler APIs, or utilize well known services such as GSheets etc.? Matillion has got some of the best and easiest to use connectors out there. Not so great: Do you need have a competent CI/CD flow that you will be able to update / compare from Matillion as well as other sources at the same time? Good luck, you will need to be extra careful, as you might have to have a deeper dive into your servers Terminal each time you have a git conflict.
Apache Airflow is one of the best Orchestration platforms and a go-to scheduler for teams building a data platform or pipelines.
Apache Airflow supports multiple operators, such as the Databricks, Spark, and Python operators. All of these provide us with functionality to implement any business logic.
Apache Airflow is highly scalable, and we can run a large number of DAGs with ease. It provided HA and replication for workers. Maintaining airflow deployments is very easy, even for smaller teams, and we also get lots of metrics for observability.
UI/Dashboard can be updated to be customisable, and jobs summary in groups of errors/failures/success, instead of each job, so that a summary of errors can be used as a starting point for reviewing them.
Navigation - It's a bit dated. Could do with more modern web navigation UX. i.e. sidebars navigation instead of browser back/forward.
Again core functional reorg in terms of UX. Navigation can be improved for core functions as well, instead of discovery.
Matillion is brilliant at importing data -- it would be amazing to have more ways to export data, from emailed exports to API pushes.
Any Python that takes more than a few lines of code requires an external server to run it. It would be great to have more integration (perhaps in a connected virtual environment) to easily integrate customized code.
Troubleshooting server logs requires quite a bit of technical expertise. More human readable detailed error handling would be greatly appreciated.
With the current experience of Matillion, we are likely to renew with the current feature option but will also look for improvement in various areas including scalability and dependability. 1. Connectors: It offers various connectors option but isn't full proof which we will be looking forward as we grow. 2. Scalability: As usage increase, we want Matillion system to be more stable.
For its capability to connect with multicloud environments. Access Control management is something that we don't get in all the schedulers and orchestrators. But although it provides so many flexibility and options to due to python , some level of knowledge of python is needed to be able to build workflows.
We are able to bring on new resources and teach them how to use Matillion without having to invest a significant amount of time. We prefer looking for resources with any type of ETL skill-set and feel that they can learn Matillion without problem. In addition, the prebuilt objects cover more than 95% of our use cases and we do not have to build much from scratch.
Overall, I've found Matillion to be responsive and considerate. I feel like they value us as a customer even when I know they have customers who spend more on the product than we do. That speaks to a motive higher than money. They want to make a good product and a good experience for their customers. If I have any complaint, it's that support sometimes feels community-oriented. It isn't always immediately clear to me that my support requests are going to a support engineer and not to the community at large. Usually, though, after a bit of conversation, it's clear that Matillion is watching and responding. And responses are generally quick in coming.
Multiple DAGs can be orchestrated simultaneously at varying times, and runs can be reproduced or replicated with relative ease. Overall, utilizing Apache Airflow is easier to use than other solutions now on the market. It is simple to integrate in Apache Airflow, and the workflow can be monitored and scheduling can be done quickly using Apache Airflow. We advocate using this tool for automating the data pipeline or process.
Fivetran offers a managed service and pre-configured schemas/models for data loading, which means much less administrative work for initial setup and ongoing maintenance. But it comes at a much higher price tag. So, knowing where your sweet spot is in the build vs. buy spectrum is essential to deciding which tool fits better. For the transformation part, dbt is purely (SQL-) code-based. So, it is mainly whether your developers prefer a GUI or code-based approach.
We're using Matillion on EC2 instances, and we have about 20 projects for our clients in the same instance. Sometimes, we're struggling to manage schedules for all projects because thread management is not visible, and we can't see the process at the instance level.
Impact Depends on number of workflows. If there are lot of workflows then it has a better usecase as the implementation is justified as it needs resources , dedicated VMs, Database that has a cost