PostgreSQL (alternately Postgres) is a free and open source object-relational database system boasting over 30 years of active development, reliability, feature robustness, and performance. It supports SQL and is designed to support various workloads flexibly.
N/A
Pricing
Apache Spark
PostgreSQL
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache Spark
PostgreSQL
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Apache Spark
PostgreSQL
Considered Both Products
Apache Spark
No answer on this topic
PostgreSQL
Verified User
Team Lead
Chose PostgreSQL
I found PostgreSQL to be better compared to MySQL. The community support is very good. Some features that I feel are not present in MySQL are:
Compared to MySQL, it works well if you need to extend to your use case Compared to Spark, it works better w.r.t development time in a central database setting Like Redis, it cannot be used for caching and quick access of non-structured data
Well suited: To most of the local run of datasets and non-prod systems - scalability is not a problem at all. Including data from multiple types of data sources is an added advantage. MLlib is a decently nice built-in library that can be used for most of the ML tasks. Less appropriate: We had to work on a RecSys where the music dataset that we used was around 300+Gb in size. We faced memory-based issues. Few times we also got memory errors. Also the MLlib library does not have support for advanced analytics and deep-learning frameworks support. Understanding the internals of the working of Apache Spark for beginners is highly not possible.
PostgreSQL, unlike other databases, is user-friendly and uses an open-source database. Ideal for relational databases, they can be accessed when speed and efficiency are required. It enables high-availability and disaster recovery replication from instance to instance. PostgreSQL can store data in a JSON format, including hashes, keys, and values. Multi-platform compatibility is also a big selling point. We could, however, use all the DBMS’s cores. While it works well in fast environments, it can be problematic in slower ones or cause multiple master replication.
The stability it offers, its speed of response and its resource management is excellent even in complex database environments and with low-resource machines.
The large amount of resources it has in addition to the many own and third-party tools that are compatible that make productivity greatly increase.
The adaptability in various environments, whether distributed or not, [is a] complete set of configuration options which allows to greatly customize the work configuration according to the needs that are required.
The excellent handling of referential and transactional integrity, its internal security scheme, the ease with which we can create backups are some of the strengths that can be mentioned.
The query syntax for JSON fields is unwieldy when you start getting into complex queries with many joins.
I wish there was a distinction (a flag) you could set for automated scripts vs working in the psql CLI, which would provide an 'Are you sure you want to do X?' type prompt if your query is likely to affect more than a certain number of rows. Especially on updates/deletes. Setting the flag in the headless(scripted) flow would disable the prompt.
Better documentation around JSON and Array aggregation, with more examples of how the data is transformed.
If the team looking to use Apache Spark is not used to debug and tweak settings for jobs to ensure maximum optimizations, it can be frustrating. However, the documentation and the support of the community on the internet can help resolve most issues. Moreover, it is highly configurable and it integrates with different tools (eg: it can be used by dbt core), which increase the scenarios where it can be used
Postgresql is the best tool out there for relational data so I have to give it a high rating when it comes to analytics, data availability and consistency, so on and so forth. SQL is also a relatively consistent language so when it comes to building new tables and loading data in from the OLTP database, there are enough tools where we can perform ETL on a scalable basis.
The data queries are relatively quick for a small to medium sized table. With complex joins, and a wide and deep table however, the performance of the query has room for improvement.
1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
There are several companies that you can contract for technical support, like EnterpriseDB or Percona, both first level in expertise and commitment to the software.
But we do not have contracts with them, we have done all the way from googling to forums, and never have a problem that we cannot resolve or pass around. And for dozens of projects and more than 15 years now.
The online training is request based. Had there been recorded videos available online for potential users to benefit from, I could have rated it higher. The online documentation however is very helpful. The online documentation PDF is downloadable and allows users to pace their own learning. With examples and code snippets, the documentation is great starting point.
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Postgres stacks up just [fine] along the other big players in the RDBMS world. It's very popular for a reason. It's very close to MySQL in terms of cost and features - I'd pick either solution and be just as happy. Compared to Oracle it is a MUCH cheaper solution that is just as usable.
The user-role system has saved us tons of time and thus money. As I mentioned in the "Use Case" section, Postgres is not only used by engineering but also finance to measure how much to charge customers and customer support to debug customer issues. Sure, it's not easy for non-technical employees to psql in and view raw tables, but it has saved engineering hundreds of man-hours that would have had to be spent on building equivalent tools to serve finance or customer support.
It provides incredibly trustworthy storage for wherever customer data dumped in. In our 6 years of Postgres existence, we have not lost a byte of customer data due to Postgres messing up a transaction or during the multiple times the hard-drives failed (thanks to ACID compliance!).
This is less significant, but Postgres is also quite easy to manage (unless you are going above and beyond to squeeze out every last bit of performance). There's not much to configure, and the out of the box settings are quite sane. That has saved us engineers lots of time that would have gone into Postgres administration.