Microsoft Azure Cosmos DB is Microsoft's Big Data analysis platform. It is a NoSQL database service and is a replacement for the earlier DocumentDB NoSQL database.
N/A
MongoDB
Score 8.7 out of 10
N/A
MongoDB is an open source document-oriented database system. It is part of the NoSQL family of database systems. Instead of storing data in tables as is done in a "classical" relational database, MongoDB stores structured data as JSON-like documents with dynamic schemas (MongoDB calls the format BSON), making the integration of data in certain types of applications easier and faster.
$0.10
million reads
OrientDB
Score 8.0 out of 10
N/A
OrientDB is a NoSQL embeddable graph database developed by UK company Orient Technologies which was acquired by CallidusCloud in 2017, who in turn was acquired by SAP in 2018. At present OrientDB is an open source database available free on an Apache 2 license.
N/A
Pricing
Azure Cosmos DB
MongoDB
OrientDB
Editions & Modules
No answers on this topic
Shared
$0
per month
Serverless
$0.10million reads
million reads
Dedicated
$57
per month
No answers on this topic
Offerings
Pricing Offerings
Azure Cosmos DB
MongoDB
OrientDB
Free Trial
No
Yes
No
Free/Freemium Version
No
Yes
No
Premium Consulting/Integration Services
No
No
No
Entry-level Setup Fee
No setup fee
No setup fee
No setup fee
Additional Details
—
Fully managed, global cloud database on AWS, Azure, and GCP
—
More Pricing Information
Community Pulse
Azure Cosmos DB
MongoDB
OrientDB
Considered Multiple Products
Azure Cosmos DB
Verified User
Engineer
Chose Azure Cosmos DB
Azure Cosmos DB is a fully managed NoSQL database & globally distributed NoSQL database service. Its very fast and predictable performance, high availability, elastic scaling, global distribution, and ease of development DB platform compare to MongoDB.
Azure Cosmos DB has the benefit of having multi-master key tenancy compared to Redis and Mongo. Reads are just as fast, if not faster than Mongo. However, the distribution of writes (i.e. ACID transactions) isn't as high as Google Cloud Spanner or CouchDB. Azure Cosmos DB …
We evaluated Mongo DB and Amazon Redshift. In the end, we decided to have both Redshift and Cosmos but for different app stacks. For apps hosted on Azure, Cosmos plays a very important role. Also from a support standpoint, Microsoft offers very good service and an equally good …
Our development and administration teams are just more familiar with the Microsoft Stack, and there was very little additional knowledge required to put this into production.
Cosmos DB is unique in the industry as a true multi-model, cloud-native database engine that comes with solutions for geo-redundancy, multi-master writes, (globally!) low latency, and cost-effective hosting built in. I've yet to see anything else that even comes close to the …
MongoDB is our go-to database solution for any project, and the more we work with it the more we love it. Some say that NoSQL is pointless... Our developers wholeheartedly disagree, because they love working with it. Though both NoSQL and SQL have their purposes, in most …
MongoDB provides better performance on a big database. If you prefer to define indexes rather than a map/reduce function, MongoDB is good for you. It's quick to start it up and very easy to learn, basically no entry barrier. MongoDB's community is very welcoming.
Like any NoSQL database, whether it's MongoDB or not, it's best suited for unstructured data. It's also well suited for storing raw data before processing it and performing any type of ETL on the data.
If asked by a colleague I would highly recommend MongoDB. MongoDB provides incredible flexibility and is quick and easy to set up. It also provides extensive documentation which is very useful for someone new to the tool. Though I've used it for years and still referenced the docs often. From my experience and the use cases I've worked on, I'd suggest using it anywhere that needs a fast, efficient storage space for non-relational data. If a relational database is needed then another tool would be more apt.
Scalable Instantly and automatically serverless database for any large scale business.
Quick access and response to data queries due to high speed in reading and writing data
Create a powerful digital experience for your customers with real-time offers and agile access to DB with super-fast analysis and comparison for best recommendation
Being a JSON language optimizes the response time of a query, you can directly build a query logic from the same service
You can install a local, database-based environment rather than the non-relational real-time bases such a firebase does not allow, the local environment is paramount since you can work without relying on the internet.
Forming collections in Mango is relatively simple, you do not need to know of query to work with it, since it has a simple graphic environment that allows you to manage databases for those who are not experts in console management.
We had a thought time migrating from traditional DBs to Cosmos. Azure should provide a seamless platform for the migration of data from on-premises to cloud.
An aggregate pipeline can be a bit overwhelming as a newcomer.
There's still no real concept of joins with references/foreign keys, although the aggregate framework has a feature that is close.
Database management/dev ops can still be time-consuming if rolling your own deployments. (Thankfully there are plenty of providers like Compose or even MongoDB's own Atlas that helps take care of the nitty-gritty.
It's efficient, easy to scale, and works. We do have to do a bit of administration, but less now than when we started with this a couple of years ago. Microsoft continues to improve its self-management capability.
I am looking forward to increasing our SaaS subscriptions such that I get to experience global replica sets, working in reads from secondaries, and what not. Can't wait to be able to exploit some of the power that the "Big Boys" use MongoDB for.
It has very good compatibility and adaptability with other APIs and developers can safely create new apps because it is compatible with various tools and can be easily managed and run under the cloud, and in terms of security, it is one of the best of its kind, which is very powerful and excellent.
NoSQL database systems such as MongoDB lack graphical interfaces by default and therefore to improve usability it is necessary to install third-party applications to see more visually the schemas and stored documents. In addition, these tools also allow us to visualize the commands to be executed for each operation.
Microsoft is the best when it comes to after-sales support. They have a well-structured training and knowledge base portal that anyone can use. They are usually quick to respond to cases and are on point for on-call support. I have no complaints from a support standpoint. Pretty happy with the support.
Finding support from local companies can be difficult. There were times when the local company could not find a solution and we reached a solution by getting support globally. If a good local company is found, it will overcome all your problems with its global support.
While the setup and configuration of MongoDB is pretty straight forward, having a vendor that performs automatic backups and scales the cluster automatically is very convenient. If you do not have a system administrator or DBA familiar with MongoDB on hand, it's a very good idea to use a 3rd party vendor that specializes in MongoDB hosting. The value is very well worth it over hosting it yourself since the cost is often reasonable among providers.
Cosmos DB is unique in the industry as a true multi-model, cloud-native database engine that comes with solutions for geo-redundancy, multi-master writes, (globally!) low latency, and cost-effective hosting built in. I've yet to see anything else that even comes close to the power that Cosmos DB packs into its solution. The simplicity and tooling support are nice bonus features as well.
We have [measured] the speed in reading/write operations in high load and finally select the winner = MongoDBWe have [not] too much data but in case there will be 10 [times] more we need Cassandra. Cassandra's storage engine provides constant-time writes no matter how big your data set grows. For analytics, MongoDB provides a custom map/reduce implementation; Cassandra provides native Hadoop support.
Open Source w/ reasonable support costs have a direct, positive impact on the ROI (we moved away from large, monolithic, locked in licensing models)
You do have to balance the necessary level of HA & DR with the number of servers required to scale up and scale out. Servers cost money - so DR & HR doesn't come for free (even though it's built into the architecture of MongoDB