Azure Synapse Analytics is described as the former Azure SQL Data Warehouse, evolved, and as a limitless analytics service that brings together enterprise data warehousing and Big Data analytics. It gives users the freedom to query data using either serverless or provisioned resources, at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.
$4,700
per month 5000 Synapse Commit Units (SCUs)
SAP BW
Score 8.3 out of 10
N/A
SAP Business Warehouse, or SAP BW (formerly SAP NetWeaver Business Warehouse) is SAP's legacy data warehouse solution, now superseded by SAP BW/4HANA, and the SAP Data Warehouse Cloud which was launched in 2019.
SAP BW versions up to 7.4 have reached end of maintenance. SAP BW 7.5 support is extended to align with SAP Business Suite with NetWeaver components. For existing customers maintenance is scheduled to continue through 2027, with extended support available through 2030.
N/A
Pricing
Azure Synapse Analytics
SAP Business Warehouse
Editions & Modules
Tier 1
$4,700
per month 5,000 Synapse Commit Units (SCUs)
Tier 2
$9,200
per month 10,000 Synapse Commit Units (SCUs)
Tier 3
$21,360
per month 24,000 Synapse Commit Units (SCUs)
Tier 4
$50,400
per month 60,000 Synapse Commit Units (SCUs)
Tier 5
$117,000
per month 150,000 Synapse Commit Units (SCUs)
Tier 6
$259,200
per month 360,000 Synapse Commit Units (SCUs)
No answers on this topic
Offerings
Pricing Offerings
Azure Synapse Analytics
SAP BW
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Azure Synapse Analytics
SAP Business Warehouse
Features
Azure Synapse Analytics
SAP Business Warehouse
Access Control and Security
Comparison of Access Control and Security features of Product A and Product B
It's well suited for large, fastly growing, and frequently changing data warehouses (e.g., in startups). It's also suited for companies that want a single, relatively easy-to-use, centralized cloud service for all their data needs. Larger, more structured organizations could still benefit from this service by using Synapse Dedicated SQL Pools, knowing that costs will be much higher than other solutions. I think this product is not suited for smaller, simpler workloads (where an Azure SQL Database and a Data Factory could be enough) or very large scenarios, where it may be better to build custom infrastructure.
SAP BW is best for: 1. Large enterprises 2. Enterprises with 3+ legacy systems with entrenched users (politically difficult to merge) 3. Enterprises with employees who can understand both the technical capabilities of SAP BW and the needs of the business users - ability to speak both languages, otherwise the program could be unwieldy and potentially underutilized (it's not particularly inexpensive) SAP BW is less appropriate for: 1. Small enterprises 2. Enterprises who have well established, same location, CRM and UFS - the integration of data analysis will be easier and less expensive with other solutions 3. HANA
Quick to return data. Queries in a SQL data warehouse architecture tend to return data much more quickly than a OLTP setup. Especially with columnar indexes.
Ability to manage extremely large SQL tables. Our databases contain billions of records. This would be unwieldy without a proper SQL datawarehouse
Backup and replication. Because we're already using SQL, moving the data to a datawarehouse makes it easier to manage as our users are already familiar with SQL.
With Azure, it's always the same issue, too many moving parts doing similar things with no specialisation. ADF, Fabric Data Factory and Synapse pipeline serve the same purpose. Same goes for Fabric Warehouse and Synapse SQL pools.
Could do better with serverless workloads considering the competition from databricks and its own fabric warehouse
Synapse pipelines is a replica of Azure Data Factory with no tight integration with Synapse and to a surprise, with missing features from ADF. Integration of warehouse can be improved with in environment ETl tools
The data warehouse portion is very much like old style on-prem SQL server, so most SQL skills one has mastered carry over easily. Azure Data Factory has an easy drag and drop system which allows quick building of pipelines with minimal coding. The Spark portion is the only really complex portion, but if there's an in-house python expert, then the Spark portion is also quiet useable.
The overall usability is robust. The tool offers lot of native feature to achieve all the data warehousing functions. Starting from data modelling to reporting and authorisation, the tool provided native features for almost all the areas of analytics. Integration of hybrid modelling with hana studio opened the usage of sql functions with the sap analytics
Microsoft does its best to support Synapse. More and more articles are being added to the documentation, providing more useful information on best utilizing its features. The examples provided work well for basic knowledge, but more complex examples should be added to further assist in discovering the vast abilities that the system has.
In comparing Azure Synapse to the Google BigQuery - the biggest highlight that I'd like to bring forward is Azure Synapse SQL leverages a scale-out architecture in order to distribute computational processing of data across multiple nodes whereas Google BigQuery only takes into account computation and storage.
SAP Business Warehouse scores higher in data warehouse functionalities for integration to SAP ERP and other SAP solutions such as SAP CRM, SAP APO, and SAP SRM. Standard SAP data source extractors which are available in SAP ERP can be used immediately for full or delta replication into SAP Business Warehouse. System governance in SAP Business Warehouse is top-notch with change management support for migration between system landscape from the development system to production system.
Licensing fees is replaced with Azure subscription fee. No big saving there
More visibility into the Azure usage and cost
It can be used a hot storage and old data can be archived to data lake. Real time data integration is possible via external tables and Microsoft Power BI
Positive - This tool report output is in Excel so it's a good tool if your users are familiar with Excel.
Positive: this tool has rich BI content so developing extractors for standard processes from SAP ECC can be done in minutes.
Negative: It lacks lot of features which are available in other newer tools today. For ex. - rich charts, rich filtering, exporting capabilities, user interface.
Negative: Its not a plug and play tool like Qlikview, Lumira, or Tableau. Even a single report development in this tool takes a lot of time compared to others.