Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Google BigQuery
Score 8.8 out of 10
N/A
Google's BigQuery is part of the Google Cloud Platform, a database-as-a-service (DBaaS) supporting the querying and rapid analysis of enterprise data.
$6.25
per TiB (after the 1st 1 TiB per month, which is free)
Google Cloud SQL
Score 8.8 out of 10
N/A
Google Cloud SQL is a database-as-a-service (DBaaS) with the capability and functionality of MySQL.
$0
per core hour
Pricing
Google BigQueryGoogle Cloud SQL
Editions & Modules
Standard edition
$0.04 / slot hour
Enterprise edition
$0.06 / slot hour
Enterprise Plus edition
$0.10 / slot hour
License - Express
$0
per core hour
License - Web
$0.01134
per core hour
Storage - for backups
$.08
per month per GB
HA Storage - for backups
$.08
per month per GB
Storage - HDD storage capacity
$.09
per month per GB
License - Standard
$0.13
per core hour
Storage - SSD storage capacity
$.17
per month per GB
HA Storage - HDD storage capacity
$.18
per month per GB
HA Storage - SSD storage capacity
$.34
per month per GB
License - Enterprise
$0.47
per core hour
Memory
$5.11
per month per GB
HA Memory
$10.22
per month per GB
vCPUs
$30.15
per month per vCPU
HA vCPUs
$60.30
per month per vCPU
Offerings
Pricing Offerings
Google BigQueryGoogle Cloud SQL
Free Trial
YesYes
Free/Freemium Version
YesNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional DetailsPricing varies with editions, engine, and settings, including how much storage, memory, and CPU you provision. Cloud SQL offers per-second billing.
More Pricing Information
Community Pulse
Google BigQueryGoogle Cloud SQL
Considered Both Products
Google BigQuery
Chose Google BigQuery
We selected BigQuery since we were already making use of many other offerings within the Google Cloud Platform and it made sense to stay within that eco-system. Of course, we made sure it met our needs and was cost-effective, and when it did we didn't seriously consider an …
Chose Google BigQuery
SingleStore has a much lower query latency compared to BigQuery. Thus, we segregate faster tasks to SingleStore, and use BigQuery has our main database to store all historical data.
Google Cloud SQL
Chose Google Cloud SQL
DigitalOcean Managed database is relatively less costly compared to Google Cloud SQL database.

Google Cloud SQL service is well integrated with other Google Cloud Platform services such as IAM which enables fine grain access to team members.
Chose Google Cloud SQL
Kind of similar features provided against RDS. Used this because of transactional db
Chose Google Cloud SQL
BigQuery is a great analytical database and is generally our first choice for large analytical workloads. While its performance and throughput far outperforms Google Cloud SQL but it supports a far limited dialets of SQL. Generally a significant rewrite will be needed for …
Chose Google Cloud SQL
The Google Cloud SQL offering fits into our development stack and was a clean replacement for our MySQL database. If we had been using SQL Server instead, then the offering from Azure would have made more sense. I have used both in the past and both work well, with GCP being …
Features
Google BigQueryGoogle Cloud SQL
Database-as-a-Service
Comparison of Database-as-a-Service features of Product A and Product B
Google BigQuery
8.5
80 Ratings
0% above category average
Google Cloud SQL
8.8
33 Ratings
4% above category average
Automatic software patching8.017 Ratings9.612 Ratings
Database scalability9.179 Ratings8.533 Ratings
Automated backups8.524 Ratings9.033 Ratings
Database security provisions8.773 Ratings8.433 Ratings
Monitoring and metrics8.375 Ratings8.432 Ratings
Automatic host deployment8.013 Ratings9.012 Ratings
Best Alternatives
Google BigQueryGoogle Cloud SQL
Small Businesses
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10
Medium-sized Companies
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10
Enterprises
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Google BigQueryGoogle Cloud SQL
Likelihood to Recommend
8.8
(77 ratings)
8.4
(33 ratings)
Likelihood to Renew
8.1
(5 ratings)
9.1
(2 ratings)
Usability
7.1
(6 ratings)
8.4
(15 ratings)
Availability
7.3
(1 ratings)
-
(0 ratings)
Performance
6.4
(1 ratings)
-
(0 ratings)
Support Rating
5.6
(11 ratings)
9.1
(5 ratings)
Implementation Rating
-
(0 ratings)
9.1
(1 ratings)
Configurability
6.4
(1 ratings)
-
(0 ratings)
Contract Terms and Pricing Model
10.0
(1 ratings)
-
(0 ratings)
Ease of integration
7.3
(1 ratings)
9.1
(11 ratings)
Product Scalability
7.3
(1 ratings)
-
(0 ratings)
Professional Services
8.2
(2 ratings)
-
(0 ratings)
User Testimonials
Google BigQueryGoogle Cloud SQL
Likelihood to Recommend
Google
Event-based data can be captured seamlessly from our data layers (and exported to Google BigQuery). When events like page-views, clicks, add-to-cart are tracked, Google BigQuery can help efficiently with running queries to observe patterns in user behaviour. That intermediate step of trying to "untangle" event data is resolved by Google BigQuery. A scenario where it could possibly be less appropriate is when analysing "granular" details (like small changes to a database happening very frequently).
Read full review
Google
Does what it promises well, for instance, as a sidecar for the main enterprise data warehouse. However, I would not recommend using it as the main data warehouse, particularly due to the heavy business logic, as other dedicated tools are more suitable for ensuring scalable operations in terms of change management and multi-developer adjustments.
Read full review
Pros
Google
  • Realtime integration with Google Sheets.
  • GSheet data can be linked to a BigQuery table and the data in that sheet is ingested in realtime into BigQuery. It's a live 'sync' which means it supports insertions, deletions, and alterations. The only limitation here is the schema'; this remains static once the table is created.
  • Seamless integration with other GCP products.
  • A simple pipeline might look like this:-
  • GForms -> GSheets -> BigQuery -> Looker
  • It all links up really well and with ease.
  • One instance holds many projects.
  • Separating data into datamarts or datameshes is really easy in BigQuery, since one BigQuery instance can hold multiple projects; which are isolated collections of datasets.
Read full review
Google
  • It has a easily and user understandable interface which provides it every necessary feature to come up with.
  • It's backend is very strong that can help us to run big quieres without any hesitation.
  • It's integration with other tools are one of the powerful feature which makes it more suitable to use.
Read full review
Cons
Google
  • Please expand the availability of documentation, tutorials, and community forums to provide developers with comprehensive support and guidance on using Google BigQuery effectively for their projects.
  • If possible, simplify the pricing model and provide clearer cost breakdowns to help users understand and plan for expenses when using Google BigQuery. Also, some cost reduction is welcome.
  • It still misses the process of importing data into Google BigQuery. Probably, by improving compatibility with different data formats and sources and reducing the complexity of data ingestion workflows, it can be made to work.
Read full review
Google
  • Increasing support for more database engines may enable a wider range of application needs to be met.
  • Implementing and updating cutting-edge security features on a constant basis.
  • Streamlining and enhancing the tools for transferring data to Google Cloud SQL from on-premises databases or other cloud providers.
Read full review
Likelihood to Renew
Google
We have to use this product as its a 3rd party supplier choice to utilise this product for their data side backend so will not be likely we will move away from this product in the future unless the 3rd party supplier decides to change data vendors.
Read full review
Google
It fits the current needs and bandwith of out lean organization.
Read full review
Usability
Google
I think overall it is easy to use. I haven't done anything from the development side but an more of an end user of reporting tables built in Google BigQuery. I connect data visualization tools like Tableau or Power BI to the BigQuery reporting tables to analyze trends and create complex dashboards.
Read full review
Google
As with other cloud tools, users must learn a new terminology to navigate the various tools and configurations, and understand Google Cloud's configuration structure to perform even the most basic operations. So the learning curve is quite steep, but after a few months, it gets easier to maintain.
Read full review
Reliability and Availability
Google
I have never had any significant issues with Google Big Query. It always seems to be up and running properly when I need it. I cannot recall any times where I received any kind of application errors or unplanned outages. If there were any they were resolved quickly by my IT team so I didn't notice them.
Read full review
Google
No answers on this topic
Performance
Google
I think Google Big Query's performance is in the acceptable range. Sometimes larger datasets are somewhat sluggish to load but for most of our applications it performs at a reasonable speed. We do have some reports that include a lot of complex calculations and others that run on granular store level data that so sometimes take a bit longer to load which can be frustrating.
Read full review
Google
No answers on this topic
Support Rating
Google
BigQuery can be difficult to support because it is so solid as a product. Many of the issues you will see are related to your own data sets, however you may see issues importing data and managing jobs. If this occurs, it can be a challenge to get to speak to the correct person who can help you.
Read full review
Google
GCP support in general requires a support agreement. For small organizations like us, this is not affordable or reasonable. It would help if Google had a support mechanism for smaller organizations. It was a steep learning curve for us because this was our first entry into the cloud database world. Better documentation also would have helped.
Read full review
Alternatives Considered
Google
PowerBI can connect to GA4 for example but the data processing is more complicated and it takes longer to create dashboards. Azure is great once the data import has been configured but it's not an easy task for small businesses as it is with BigQuery.
Read full review
Google
Unlike other products, Google Cloud SQL has very flexible features that allow it to be selected for a free trial account so that the product can be analyzed and tested before purchasing it. Integration capabilities with most of the web services tools are easier regarding Google Cloud SQL with its nature and support.
Read full review
Contract Terms and Pricing Model
Google
None so far. Very satisfied with the transparency on contract terms and pricing model.
Read full review
Google
No answers on this topic
Scalability
Google
We have continued to expand out use of Google Big Query over the years. I'd say its flexibility and scalability is actually quite good. It also integrates well with other tools like Tableau and Power BI. It has served the needs of multiple data sources across multiple departments within my company.
Read full review
Google
No answers on this topic
Professional Services
Google
Google Support has kindly provide individual support and consultants to assist with the integration work. In the circumstance where the consultants are not present to support with the work, Google Support Helpline will always be available to answer to the queries without having to wait for more than 3 days.
Read full review
Google
No answers on this topic
Return on Investment
Google
  • Previously, running complex queries on our on-premise data warehouse could take hours. Google BigQuery processes the same queries in minutes. We estimate it saves our team at least 25% of their time.
  • We can target our marketing campaigns very easily and understand our customer behaviour. It lets us personalize marketing campaigns and product recommendations and experience at least a 20% improvement in overall campaign performance.
  • Now, we only pay for the resources we use. Saved $1 million annually on data infrastructure and data storage costs compared to our previous solution.
Read full review
Google
  • With managed database system, it has given us near 100% data availability
  • It has also improved web layer experience with faster processing and authentication using database fields
  • Google Cloud SQL also gels up well with Google Analytics and other analytics systems for us to join up different data points and process them for deeper dives and analysis
Read full review
ScreenShots

Google BigQuery Screenshots

Screenshot of Migrating data warehouses to BigQuery - Features a streamlined migration path from Netezza, Oracle, Redshift, Teradata, or Snowflake to BigQuery using the fully managed BigQuery Migration Service.Screenshot of bringing any data into BigQuery - Data files can be uploaded from local sources, Google Drive, or Cloud Storage buckets, using BigQuery Data Transfer Service (DTS), Cloud Data Fusion plugins, by replicating data from relational databases with Datastream for BigQuery, or by leveraging Google's data integration partnerships.Screenshot of generative AI use cases with BigQuery and Gemini models - Data pipelines that blend structured data, unstructured data and generative AI models together can be built to create a new class of analytical applications. BigQuery integrates with Gemini 1.0 Pro using Vertex AI. The Gemini 1.0 Pro model is designed for higher input/output scale and better result quality across a wide range of tasks like text summarization and sentiment analysis. It can be accessed using simple SQL statements or BigQuery’s embedded DataFrame API from right inside the BigQuery console.Screenshot of insights derived from images, documents, and audio files, combined with structured data - Unstructured data represents a large portion of untapped enterprise data. However, it can be challenging to interpret, making it difficult to extract meaningful insights from it. Leveraging the power of BigLake, users can derive insights from images, documents, and audio files using a broad range of AI models including Vertex AI’s vision, document processing, and speech-to-text APIs, open-source TensorFlow Hub models, or custom models.Screenshot of event-driven analysis - Built-in streaming capabilities automatically ingest streaming data and make it immediately available to query. This allows users to make business decisions based on the freshest data. Or Dataflow can be used to enable simplified streaming data pipelines.Screenshot of predicting business outcomes AI/ML - Predictive analytics can be used to streamline operations, boost revenue, and mitigate risk. BigQuery ML democratizes the use of ML by empowering data analysts to build and run models using existing business intelligence tools and spreadsheets.

Google Cloud SQL Screenshots

Screenshot of migrating to a fully managed database solution - Self-managing a database, such as MySQL, PostgreSQL, or SQL Server, can be inefficient and expensive, with significant effort around patching, hardware maintenance, backups, and tuning. Migrating to a fully managed solution can be done using a Database Migration Service with minimal downtime.Screenshot of data-driven application development - Cloud SQL accelerates application development via integration with the larger ecosystem of Google Cloud services, Google partners, and the open source community.