Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Google BigQuery
Score 8.7 out of 10
N/A
Google's BigQuery is part of the Google Cloud Platform, a database-as-a-service (DBaaS) supporting the querying and rapid analysis of enterprise data.
$6.25
per TiB (after the 1st 1 TiB per month, which is free)
Looker Studio
Score 8.1 out of 10
N/A
Looker Studio is a data visualization platform that transforms data into meaningful presentations and dashboards with customized reporting tools.
$9
per month per user per project
Pricing
Google BigQueryLooker Studio
Editions & Modules
Standard edition
$0.04 / slot hour
Enterprise edition
$0.06 / slot hour
Enterprise Plus edition
$0.10 / slot hour
Looker Studio Pro
$9
per month per user per project
Looker Studio
No charge
Offerings
Pricing Offerings
Google BigQueryLooker Studio
Free Trial
YesNo
Free/Freemium Version
YesYes
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Google BigQueryLooker Studio
Considered Both Products
Google BigQuery
Chose Google BigQuery
Google BigQuery seemlessly integrates with all the Google services. In Looker Studio you directly have a connector for Google BigQuery which can help to create dashboards in few clicks.
For automating some stored procedures we have used Cloud Functions which are triggered by a …
Chose Google BigQuery
I personally find it by far simpler than Amazon Redshift due it's onboarding seamlessness. For a quick start and simplify tye access to read the data big query provide better user experience and a smoother user interface. More importantly, the fact that Big Query can be easily …
Chose Google BigQuery
It's easier to connect data between BigQuery and Looker Studio instead of connecting the data between BigQuery and Tableau in terms of data explore or dashboard creating. Therefore we are considering migrating dashboards from Tableau to Looker Studio for the whole company.
On …
Chose Google BigQuery
Google BigQuery of course collects a much much larger array of raw data and can handle (practically) an unlimited amount of data. For a large enterprise like ours that relies on large-scale analytics, this is absolutely imperative. Google BigQuery can also combine GA4 data with …
Chose Google BigQuery
Main reason is how it integrates directly with the google ecosystem which really facilitates the automatization proceses for the whole company. This ensures that sales and all the other departments have the correct information on a daily bases with a ease of use with day to day …
Chose Google BigQuery
Google BigQuery's main advantage over its direct competitors (Amazon Redshift and Azure Synapse) is that it is widely supported by non-Google software, while the others rely heavily on their own cloud ecosystems.
Chose Google BigQuery
I've used Domo while working for an advertising agency and the functionality was way worse and the user interface was not near as good.
Chose Google BigQuery
Compared to SingleStore, BigQuery has a big advantage of being completely serverless, and without practical limitations.

Compared to RedShift, we found the cost model to be more fitted to our needs.
Chose Google BigQuery
Suits well for Business Intellegence and vizualization with Looker. Cloud storage options and seamless integration with Google online products.
Chose Google BigQuery
Cost is the important factor for us compared with all of the other tools Google BigQuery stands top among all of them which charges very minimal charges for storage against all the apps that we have liked the most additionally, we can do query on our data, and can build …
Chose Google BigQuery
BigQuery has a simpler and more intuitive user experience (as is the case with most of its products) compared to AWS, which has a more technical and complex profile, so it was the first tool we used. It's still my go-to option for handling SQL queries, though it doesn't detract …
Chose Google BigQuery
Google Cloud BigQuery was our first and last choice for a data warehouse. It serves all of our needs!
Looker Studio
Chose Looker Studio
We are heavily within the Google ecosystem and therefore didn't really consider alternatives to Google Data Studio since it met our somewhat limited needs at the time of implementation. For outside presentations, we would probably lean towards something that allows us to more …
Features
Google BigQueryLooker Studio
Database-as-a-Service
Comparison of Database-as-a-Service features of Product A and Product B
Google BigQuery
8.4
79 Ratings
2% below category average
Looker Studio
-
Ratings
Automatic software patching8.017 Ratings00 Ratings
Database scalability9.078 Ratings00 Ratings
Automated backups8.524 Ratings00 Ratings
Database security provisions8.772 Ratings00 Ratings
Monitoring and metrics8.274 Ratings00 Ratings
Automatic host deployment8.013 Ratings00 Ratings
BI Standard Reporting
Comparison of BI Standard Reporting features of Product A and Product B
Google BigQuery
-
Ratings
Looker Studio
7.6
55 Ratings
6% below category average
Pixel Perfect reports00 Ratings7.339 Ratings
Customizable dashboards00 Ratings8.254 Ratings
Report Formatting Templates00 Ratings7.353 Ratings
Ad-hoc Reporting
Comparison of Ad-hoc Reporting features of Product A and Product B
Google BigQuery
-
Ratings
Looker Studio
8.1
54 Ratings
4% above category average
Drill-down analysis00 Ratings8.946 Ratings
Formatting capabilities00 Ratings8.350 Ratings
Integration with R or other statistical packages00 Ratings5.625 Ratings
Report sharing and collaboration00 Ratings9.653 Ratings
Report Output and Scheduling
Comparison of Report Output and Scheduling features of Product A and Product B
Google BigQuery
-
Ratings
Looker Studio
8.7
54 Ratings
6% above category average
Publish to Web00 Ratings8.148 Ratings
Publish to PDF00 Ratings9.747 Ratings
Report Versioning00 Ratings8.335 Ratings
Report Delivery Scheduling00 Ratings8.337 Ratings
Delivery to Remote Servers00 Ratings9.020 Ratings
Data Discovery and Visualization
Comparison of Data Discovery and Visualization features of Product A and Product B
Google BigQuery
-
Ratings
Looker Studio
6.5
53 Ratings
18% below category average
Pre-built visualization formats (heatmaps, scatter plots etc.)00 Ratings8.453 Ratings
Location Analytics / Geographic Visualization00 Ratings8.250 Ratings
Predictive Analytics00 Ratings5.027 Ratings
Pattern Recognition and Data Mining00 Ratings4.63 Ratings
Best Alternatives
Google BigQueryLooker Studio
Small Businesses
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10
Supermetrics
Supermetrics
Score 9.9 out of 10
Medium-sized Companies
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10
Supermetrics
Supermetrics
Score 9.9 out of 10
Enterprises
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10
IBM Analytics Engine
IBM Analytics Engine
Score 7.3 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Google BigQueryLooker Studio
Likelihood to Recommend
8.8
(78 ratings)
8.7
(56 ratings)
Likelihood to Renew
8.1
(5 ratings)
9.0
(1 ratings)
Usability
7.2
(6 ratings)
8.5
(7 ratings)
Availability
7.3
(1 ratings)
-
(0 ratings)
Performance
6.4
(1 ratings)
-
(0 ratings)
Support Rating
5.7
(11 ratings)
6.7
(10 ratings)
Configurability
6.4
(1 ratings)
-
(0 ratings)
Contract Terms and Pricing Model
10.0
(1 ratings)
-
(0 ratings)
Ease of integration
7.3
(1 ratings)
-
(0 ratings)
Product Scalability
7.3
(1 ratings)
-
(0 ratings)
Professional Services
8.2
(2 ratings)
-
(0 ratings)
User Testimonials
Google BigQueryLooker Studio
Likelihood to Recommend
Google
Event-based data can be captured seamlessly from our data layers (and exported to Google BigQuery). When events like page-views, clicks, add-to-cart are tracked, Google BigQuery can help efficiently with running queries to observe patterns in user behaviour. That intermediate step of trying to "untangle" event data is resolved by Google BigQuery. A scenario where it could possibly be less appropriate is when analysing "granular" details (like small changes to a database happening very frequently).
Read full review
Google
Looker Studio is well-suited for those wanting to analyze web/site data and performance quickly. It is simple enough to learn/use for quick report-building or drilling into data. Looker Studio is easier to use/understand than the GA4 console and thus has a better UI/UX. It is an efficient tool for fast, simple data needs—especially for team members with limited analytical capabilities and knowledge.
Read full review
Pros
Google
  • Realtime integration with Google Sheets.
  • GSheet data can be linked to a BigQuery table and the data in that sheet is ingested in realtime into BigQuery. It's a live 'sync' which means it supports insertions, deletions, and alterations. The only limitation here is the schema'; this remains static once the table is created.
  • Seamless integration with other GCP products.
  • A simple pipeline might look like this:-
  • GForms -> GSheets -> BigQuery -> Looker
  • It all links up really well and with ease.
  • One instance holds many projects.
  • Separating data into datamarts or datameshes is really easy in BigQuery, since one BigQuery instance can hold multiple projects; which are isolated collections of datasets.
Read full review
Google
  • Self-service
  • Easy to use, point and click
  • Little to no training required
  • Easy to share internally and externally
  • Rich visualizations
  • Canned reports
  • Easy to copy/paste/dupe existing reports
  • Ability to join data sets
  • Easy integration with various data sources
  • Flexible data integrations, including lowest common denominator (CSV, XLS, G-Sheets)
  • Wide range of APIs
  • Secure / authentication via Google SSO
  • Easy to share / re-assign ownership of reports and data sources
Read full review
Cons
Google
  • Please expand the availability of documentation, tutorials, and community forums to provide developers with comprehensive support and guidance on using Google BigQuery effectively for their projects.
  • If possible, simplify the pricing model and provide clearer cost breakdowns to help users understand and plan for expenses when using Google BigQuery. Also, some cost reduction is welcome.
  • It still misses the process of importing data into Google BigQuery. Probably, by improving compatibility with different data formats and sources and reducing the complexity of data ingestion workflows, it can be made to work.
Read full review
Google
  • Few functionalities are very exclusive only for data studio.
  • It's time taking to load data and at the same time only single Data source can be connected.
  • When editing the reports you have to switch between Edit and View mode to see how does the change looks like.
Read full review
Likelihood to Renew
Google
We have to use this product as its a 3rd party supplier choice to utilise this product for their data side backend so will not be likely we will move away from this product in the future unless the 3rd party supplier decides to change data vendors.
Read full review
Google
It is the simplest and least expensive way for us to automate our reporting at this time. I like the ability to customize literally everything about each report, and the ability to send out reports automatically in emails. The only issue we have been having recently is a technical glitch in the automatic email report. Sadly, there is almost no support for this tool from Google, but is also free, so that is important to take into consideration
Read full review
Usability
Google
I think overall it is easy to use. I haven't done anything from the development side but an more of an end user of reporting tables built in Google BigQuery. I connect data visualization tools like Tableau or Power BI to the BigQuery reporting tables to analyze trends and create complex dashboards.
Read full review
Google
It is not ideal and requires time and dedication to understand how to work with it. Also, it has a lot of limitations around data it can accept. But in most cases, this tool is sufficient for everyday tasks of product and marketing departments. I wouldn't say that the interface is very user-friendly, but for people who regularly work with analytical tools, it must be ok.
Read full review
Reliability and Availability
Google
I have never had any significant issues with Google Big Query. It always seems to be up and running properly when I need it. I cannot recall any times where I received any kind of application errors or unplanned outages. If there were any they were resolved quickly by my IT team so I didn't notice them.
Read full review
Google
No answers on this topic
Performance
Google
I think Google Big Query's performance is in the acceptable range. Sometimes larger datasets are somewhat sluggish to load but for most of our applications it performs at a reasonable speed. We do have some reports that include a lot of complex calculations and others that run on granular store level data that so sometimes take a bit longer to load which can be frustrating.
Read full review
Google
No answers on this topic
Support Rating
Google
BigQuery can be difficult to support because it is so solid as a product. Many of the issues you will see are related to your own data sets, however you may see issues importing data and managing jobs. If this occurs, it can be a challenge to get to speak to the correct person who can help you.
Read full review
Google
I give it a lower support rating because it seems like our Dev team hasn't gotten the support they need to set up our database to connect. Seems like we hit a roadblock and the project got put on pause for dev. That sucks for me because it is harder to get the dev team to focus on it if they don't get the help they need to set it up.
Read full review
Alternatives Considered
Google
PowerBI can connect to GA4 for example but the data processing is more complicated and it takes longer to create dashboards. Azure is great once the data import has been configured but it's not an easy task for small businesses as it is with BigQuery.
Read full review
Google
The free version of Looker Studio is still better than the leading enterprise-embedded BI tools, despite its weaknesses. The leading embedded BI platforms have terrible visualizations that can be spotted a mile away. They are also primarily locked to a grid, making it very hard to fully customize. The price point is also a major deterrent, since users end up paying for lots of features they might never use. Looker Studio has weaknesses on the blending and modeling side, but we've been able to get by via connection to GBQ and transformation done in dbt.
Read full review
Contract Terms and Pricing Model
Google
None so far. Very satisfied with the transparency on contract terms and pricing model.
Read full review
Google
No answers on this topic
Scalability
Google
We have continued to expand out use of Google Big Query over the years. I'd say its flexibility and scalability is actually quite good. It also integrates well with other tools like Tableau and Power BI. It has served the needs of multiple data sources across multiple departments within my company.
Read full review
Google
No answers on this topic
Professional Services
Google
Google Support has kindly provide individual support and consultants to assist with the integration work. In the circumstance where the consultants are not present to support with the work, Google Support Helpline will always be available to answer to the queries without having to wait for more than 3 days.
Read full review
Google
No answers on this topic
Return on Investment
Google
  • Previously, running complex queries on our on-premise data warehouse could take hours. Google BigQuery processes the same queries in minutes. We estimate it saves our team at least 25% of their time.
  • We can target our marketing campaigns very easily and understand our customer behaviour. It lets us personalize marketing campaigns and product recommendations and experience at least a 20% improvement in overall campaign performance.
  • Now, we only pay for the resources we use. Saved $1 million annually on data infrastructure and data storage costs compared to our previous solution.
Read full review
Google
  • Free, so the only investment is time
  • Because it doesn't have native support of non-Google sources, it can cost more money than Tableau
  • The time spent formatting the templates or building connectors can have a negative impact on ROI
  • As a agency, charging for the reporting service is profitable after the first month or two after building the dashboard.
Read full review
ScreenShots

Google BigQuery Screenshots

Screenshot of Migrating data warehouses to BigQuery - Features a streamlined migration path from Netezza, Oracle, Redshift, Teradata, or Snowflake to BigQuery using the fully managed BigQuery Migration Service.Screenshot of bringing any data into BigQuery - Data files can be uploaded from local sources, Google Drive, or Cloud Storage buckets, using BigQuery Data Transfer Service (DTS), Cloud Data Fusion plugins, by replicating data from relational databases with Datastream for BigQuery, or by leveraging Google's data integration partnerships.Screenshot of generative AI use cases with BigQuery and Gemini models - Data pipelines that blend structured data, unstructured data and generative AI models together can be built to create a new class of analytical applications. BigQuery integrates with Gemini 1.0 Pro using Vertex AI. The Gemini 1.0 Pro model is designed for higher input/output scale and better result quality across a wide range of tasks like text summarization and sentiment analysis. It can be accessed using simple SQL statements or BigQuery’s embedded DataFrame API from right inside the BigQuery console.Screenshot of insights derived from images, documents, and audio files, combined with structured data - Unstructured data represents a large portion of untapped enterprise data. However, it can be challenging to interpret, making it difficult to extract meaningful insights from it. Leveraging the power of BigLake, users can derive insights from images, documents, and audio files using a broad range of AI models including Vertex AI’s vision, document processing, and speech-to-text APIs, open-source TensorFlow Hub models, or custom models.Screenshot of event-driven analysis - Built-in streaming capabilities automatically ingest streaming data and make it immediately available to query. This allows users to make business decisions based on the freshest data. Or Dataflow can be used to enable simplified streaming data pipelines.Screenshot of predicting business outcomes AI/ML - Predictive analytics can be used to streamline operations, boost revenue, and mitigate risk. BigQuery ML democratizes the use of ML by empowering data analysts to build and run models using existing business intelligence tools and spreadsheets.