Hortonworks Data Platform (HDP) is an open source framework for distributed storage and processing of large, multi-source data sets. HDP modernizes IT infrastructure and keeps data secure—in the cloud or on-premises—while helping to drive new revenue streams, improve customer experience, and control costs.
Hortonworks merged with Cloudera in eary 2019.
N/A
MySQL
Score 8.1 out of 10
N/A
MySQL is a popular open-source relational and embedded database, now owned by Oracle.
N/A
SAP HANA Cloud
Score 8.8 out of 10
N/A
SAP HANA is an application that uses in-memory database technology to process very large amounts of real-time data from relational databases, both SAP and non-SAP, in a very short time. The in-memory computing engine allows HANA to process data stored in RAM as opposed to reading it from a disk which means that the data can be accessed in real time by the applications using HANA. The product is sold both as an appliance and as a cloud-based software solution.
- SAP HANA has much better performance as it offers the power of in-memory computing. - SAP HANA is very well suited for analytics and data warehousing; we also have SAP BW on HANA. - MySQL is not suited for data warehousing and analytics; doesn't offer the power of in-memory …
Really, it is appropriate for any kind of company. For everyone to be successful and make wise business decisions, effective data analytics are essential. Any research analytics firm can benefit greatly from it. It won't be of much use to a modeling agency; instead, a business …
This has helped to keep a close eye on our entire data silos to get intelligent analytics and other indicators. During its use, we had also gone for other options but we realize that this is most suitable for us that's why we permanently picked this.
As SAP HANA is built into memeory, the proformance of the product is hard to beat against it's rivals but that comes with a price. You can get away with using another product but you'll be losing out else where. For example in time/multiple systems and efforts to relplicate …
Similar to other big DBMS, but better or equal at stability and technical maintenance. Better or equal at documentation. There is room for improvement at SQL path analyzing.
We compared Microsoft BI with SAP HANA. The reasons to go with SAP HANA were - 1. ability to ingest data into HANA from a non SAP database 2. in-memory database resulting in faster real time analytics 3. ability to scale up 4. ability to replicate data real time 5. very solid …
I find HDP easy to use and solves most of the problems for people looking to manage their big data. Evaluating the Hortonworks Data Platform is easy as it is free to download and install in your cluster. Single node cluster available as Sandbox is also easy for POCs.
MySQL is best suited for applications on platform like high-traffic content-driven websites, small-scale web apps, data warehouses which regards light analytical workloads. However its less suited for areas like enterprise data warehouse, OLAP cubes, large-scale reporting, applications requiring flexible or semi-structured data like event logging systems, product configurations, dynamic forms.
It is well organized. One can use it for the company's portfolio management. Various tasks can be done for managerial purposes. One can track the material from start to end product: for example, raw material, packing material & consumable material to formulated bulk and formulated drug product. This can help to manage spending as well as finding costing of the product.
It does a good job of packaging a lot of big data components into bundles and lets you use the ones you are interested in or need. It supports an extensive list of components which lets us solve many problems.
It provides the ability to manage installations and maintenance using Apache Ambari. It helps us in using management packs to install/upgrade components easily. It also helps us add, remove components, add, remove hosts, perform upgrades in a convenient manner. It also provides alerts and notifications and monitors the environment.
What they excel in is packaging open source components that are relevant and are useful to solve and complement each other as well as contribute to enhancing those components. They do a great job in the community to keep on top of what would be useful to users, fixing bugs and working with other companies and individuals to make the platform better.
Real-time reporting and analytics on data: because of its in-memory architecture, it is perfect for businesses that need to make quick decisions based on current information.
Managing workload with complex data: it can handle a vast range of data types, including relational, documental, geospatial, graph, vector, and time series data.
Developing and deploying intelligent data applications: it provides various tools for such applications and can be used for machine learning and artificial intelligence to automate tasks, gain insights from data, and make predictions.
Since it doesn't come with propriety tools for big data management, additional integration is need (for query handling, search, etc).
It was very straightforward to store clinical data without relations, such as data from sensors of a medical device. But it has limitations when needed to combine the data with other clinical data in structured format (e.g. lab results, diagnosis).
Overall look and feel of front-end management tools (e.g. monitoring) are not good. It is not bad but it doesn't look professional.
Learning curve: is big. Newbies will face problems in understanding the platform initially. However, with plenty of online resources, one can easily find solutions to problems and learn on the go.
Backup and restore: MySQL is not very seamless. Although the data is never ruptured or missed, the process involved is not very much user-friendly. Maybe, a new command-line interface for only the backup-restore functionality shall be set up again to make this very important step much easier to perform and maintain.
Requires higher processing power, otherwise it won't fly. How ever computing costs are lower. Incase you are migrating to cloud please do not select the highest config available in that series . Upgrading it later against a reserved instance can cost you dearly with a series change
Lack of clarity on licensing is one major challenge
Unless S/4 with additional features are enabled mere migration HANA DB is not a rewarding journey. Power is in S/4
For teaching Databases and SQL, I would definitely continue to use MySQL. It provides a good, solid foundation to learn about databases. Also to learn about the SQL language and how it works with the creation, insertion, deletion, updating, and manipulation of data, tables, and databases. This SQL language is a foundation and can be used to learn many other database related concepts.
We would rate our likelihood of renewing at 9/10. SAP HANA Cloud has proven to be a highly reliable and scalable data platform that consistently delivers strong performance. Its seamless integration with our overall SAP landscape, combined with improved analytics and real-time data capabilities, makes it a core part of our long-term technology strategy.
I give MySQL a 9/10 overall because I really like it but I feel like there are a lot of tech people who would hate it if I gave it a 10/10. I've never had any problems with it or reached any of its limitations but I know a few people who have so I can't give it a 10/10 based on those complaints.
It is a very useful cloud database platform which provides you faster data processing, scalability , global availability and advanced analytical capabilities. It offers integrated environment for enterprise applications which helps you to manage multiple systems easily. For end user, it provides a simplified user experience with direct navigation and personalization
We have never contacted MySQL enterprise support team for any issues related to MySQL. This is because we have been using primarily the MySQL Server community edition and have been using the MySQL support forums for any questions and practical guidance that we needed before and during the technical implementations. Overall, the support community has been very helpful and allowed us to make the most out of the community edition.
One specific example of how the support for SAP HANA Cloud impacted us is in our efforts to troubleshoot and resolve technical issues. Whenever we encountered an issue or had a question, the support team was quick to respond and provided us with clear and actionable guidance. This helped us avoid downtime and keep our analytics operations running smoothly.
Professional GIS people are some of the most risk-averse there are, and it's difficult to get them to move to HANA in one step. Start with small projects building to 80% use of HANA spatial over time.
We chose [Hortonworks Data Platform] because it's free and because [it] was an IBM partner, suggested as big data platform after biginsights platform.
You can install in more physical computer without high specs, then you can use it in order to learn how to deploy, configure a complete big data cluster.
We installed also in a cloud infrastructure of 5 virtual machine
MongoDB has a dynamic schema for how data is stored in 'documents' whereas MySQL is more structured with tables, columns, and rows. MongoDB was built for high availability whereas MySQL can be a challenge when it comes to replication of the data and making everything redundant in the event of a DR or outage.
I have deep knowledge of other disk based DBMSs. They are venerable technology, but the attempts to extend them to current architectures belie the fact they are built on 40 year old technology. There are some good columnar in-memory databases but they lack the completeness of capability present in the HANA platform.