Likelihood to Recommend It has a lot of features that are good for teams working on large-scale projects and continuously developing and reiterating their data project models. Really helpful when dealing with large data. It is a kind of one-stop solution for all data science tasks like visualization, cleaning, analyzing data, and developing models but small teams might find a lot of features unuseful.
Read full review I've created a number of daisy chain notebooks for different workflows, and every time, I create my workflows with other users in mind. Jupiter Notebook makes it very easy for me to outline my thought process in as granular a way as I want without using innumerable small. inline comments.
Read full review Pros Integration of IBM Watson APIs such as speech to text, image recognition, personality insights, etc. SPSS modeler and neural network model provide no-code environments for data scientists to build pipelines quickly. Enforced best-practices set up POCs for deployment in production with a minimum of re-work. Estimator validation lets data scientists test and prove different models. Read full review Simple and elegant code writing ability. Easier to understand the code that way. The ability to see the output after each step. The ability to use ton of library functions in Python. Easy-user friendly interface. Read full review Cons The cost is steep and so only companies with resources can afford it It will be nice to have Chinese versions so that Chinese engineers can also use it easily It takes a while to learn how to input different kinds of skin defects for detection Read full review Need more Hotkeys for creating a beautiful notebook. Sometimes we need to download other plugins which messes [with] its default settings. Not as powerful as IDE, which sometimes makes [the] job difficult and allows duplicate code as it get confusing when the number of lines increases. Need a feature where [an] error comes if duplicate code is found or [if a] developer tries the same function name. Read full review Likelihood to Renew because we find out that DSX results have improved our approach to the whole subject (data, models, procedures)
Read full review Usability The UI flawlessly merges this offering by providing a neat, minimal, responsive interface
Read full review Jupyter is highly simplistic. It took me about 5 mins to install and create my first "hello world" without having to look for help. The UI has minimalist options and is quite intuitive for anyone to become a pro in no time. The lightweight nature makes it even more likeable.
Read full review Reliability and Availability From time to time there are services unavailable, but we have been always informed before and they got back to work sooner than expected
Read full review Performance Never had slow response even on our very busy network
Read full review Support Rating I received answers mostly at once and got answered even further my question: they gave me interesting points of view and suggestion for deepening in the learning path
Read full review I haven't had a need to contact support. However, all required help is out there in public forums.
Read full review In-Person Training The trainers on the job are very smart with solutions and very able in teaching
Read full review Online Training The Platform is very handy and suggests further steps according my previous interests
Read full review Implementation Rating It surprised us with unpredictable case of use and brand new points of view
Read full review Alternatives Considered The main reason I personally changed over from Azure ML Studio is because it lacked any support for significant custom modelling with packages and services such as TensorFlow, scikit-learn, Microsoft Cognitive Toolkit and Spark ML. IBM Watson Studio provides these services and does so in a well integrated and easy to use fashion making it a preferable service over the other services that I have personally used.
Read full review With Jupyter Notebook besides doing data analysis and performing complex visualizations you can also write machine learning algorithms with a long list of libraries that it supports. You can make better predictions, observations etc. with it which can help you achieve better business decisions and save cost to the company. It stacks up better as we know Python is more widely used than R in the industry and can be learnt easily. Unlike
PyCharm jupyter notebooks can be used to make documentations and exported in a variety of formats.
Read full review Scalability It helped us in getting from 0 to DSX without getting lost
Read full review Return on Investment Could instantly show data driven insights to drive 20% incremental revenue over existing results Still don't have a real use case for unstructured data like twitter feed Some of the insights around user actions have driven new projects to automate mundane tasks Read full review Positive impact: flexible implementation on any OS, for many common software languages Positive impact: straightforward duplication for adaptation of workflows for other projects Negative impact: sometimes encourages pigeonholing of data science work into notebooks versus extending code capability into software integration Read full review ScreenShots