Jupyter Notebook vs. Spotfire

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Jupyter Notebook
Score 8.6 out of 10
N/A
Jupyter Notebook is an open-source web application that allows users to create and share documents containing live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, data visualization, and machine learning. It supports over 40 programming languages, and notebooks can be shared with others using email, Dropbox, GitHub and the Jupyter Notebook Viewer. It is used with JupyterLab, a web-based IDE for…N/A
Spotfire
Score 8.3 out of 10
N/A
Spotfire, formerly known as TIBCO Spotfire, is a visual data science platform that combines visual analytics, data science, and data wrangling, so users can analyze data at-rest and at-scale to solve complex industry-specific problems.N/A
Pricing
Jupyter NotebookSpotfire
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Jupyter NotebookSpotfire
Free Trial
NoYes
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoYes
Entry-level Setup FeeNo setup feeNo setup fee
Additional DetailsFor Enterprise engagements, contact Spotfire directly for a custom price quote.
More Pricing Information
Community Pulse
Jupyter NotebookSpotfire
Features
Jupyter NotebookSpotfire
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Jupyter Notebook
9.0
22 Ratings
7% above category average
Spotfire
7.2
8 Ratings
15% below category average
Connect to Multiple Data Sources10.022 Ratings7.88 Ratings
Extend Existing Data Sources10.021 Ratings7.48 Ratings
Automatic Data Format Detection8.514 Ratings7.88 Ratings
MDM Integration7.415 Ratings6.05 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Jupyter Notebook
7.0
22 Ratings
18% below category average
Spotfire
9.1
8 Ratings
8% above category average
Visualization6.022 Ratings9.08 Ratings
Interactive Data Analysis8.022 Ratings9.28 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Jupyter Notebook
9.5
22 Ratings
16% above category average
Spotfire
7.4
8 Ratings
9% below category average
Interactive Data Cleaning and Enrichment10.021 Ratings7.28 Ratings
Data Transformations10.022 Ratings8.08 Ratings
Data Encryption8.514 Ratings7.05 Ratings
Built-in Processors9.314 Ratings7.55 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Jupyter Notebook
9.3
22 Ratings
10% above category average
Spotfire
7.6
8 Ratings
10% below category average
Multiple Model Development Languages and Tools10.021 Ratings7.57 Ratings
Automated Machine Learning9.218 Ratings8.55 Ratings
Single platform for multiple model development10.022 Ratings7.68 Ratings
Self-Service Model Delivery8.020 Ratings6.76 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Jupyter Notebook
10.0
20 Ratings
16% above category average
Spotfire
7.4
7 Ratings
14% below category average
Flexible Model Publishing Options10.020 Ratings7.87 Ratings
Security, Governance, and Cost Controls10.019 Ratings7.07 Ratings
Best Alternatives
Jupyter NotebookSpotfire
Small Businesses
IBM Watson Studio
IBM Watson Studio
Score 9.9 out of 10
Jupyter Notebook
Jupyter Notebook
Score 8.6 out of 10
Medium-sized Companies
Posit
Posit
Score 10.0 out of 10
Posit
Posit
Score 10.0 out of 10
Enterprises
Posit
Posit
Score 10.0 out of 10
Posit
Posit
Score 10.0 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Jupyter NotebookSpotfire
Likelihood to Recommend
10.0
(23 ratings)
8.4
(351 ratings)
Likelihood to Renew
-
(0 ratings)
9.6
(30 ratings)
Usability
10.0
(2 ratings)
8.0
(27 ratings)
Availability
-
(0 ratings)
9.0
(14 ratings)
Performance
-
(0 ratings)
7.1
(14 ratings)
Support Rating
9.0
(1 ratings)
8.7
(27 ratings)
In-Person Training
-
(0 ratings)
8.3
(52 ratings)
Online Training
-
(0 ratings)
9.0
(55 ratings)
Implementation Rating
-
(0 ratings)
8.4
(17 ratings)
Configurability
-
(0 ratings)
7.1
(3 ratings)
Ease of integration
-
(0 ratings)
7.0
(2 ratings)
Product Scalability
-
(0 ratings)
7.0
(4 ratings)
Vendor post-sale
-
(0 ratings)
5.0
(1 ratings)
Vendor pre-sale
-
(0 ratings)
5.0
(1 ratings)
User Testimonials
Jupyter NotebookSpotfire
Likelihood to Recommend
Open Source
I've created a number of daisy chain notebooks for different workflows, and every time, I create my workflows with other users in mind. Jupiter Notebook makes it very easy for me to outline my thought process in as granular a way as I want without using innumerable small. inline comments.
Read full review
Spotfire
A high level of data integration is available here it supports various data sources and so on. Collaborating features allow users to give access to the dashboard and merge data analytics with other team members. It can meet the demands of both small and large size business enterprises. A customized dashboard and reports are provided to meet the specific needs and get support of extensibility through APIs and customized scripts.
Read full review
Pros
Open Source
  • Simple and elegant code writing ability. Easier to understand the code that way.
  • The ability to see the output after each step.
  • The ability to use ton of library functions in Python.
  • Easy-user friendly interface.
Read full review
Spotfire
  • It has the best coding integration (python, R) of any BI product
  • The ability to work with very large datasets (10 mil+) is better than competitors
  • Export options are more complete and have better functionality
  • The data canvas is the best tool to join and transform data vs. competitors
Read full review
Cons
Open Source
  • Need more Hotkeys for creating a beautiful notebook. Sometimes we need to download other plugins which messes [with] its default settings.
  • Not as powerful as IDE, which sometimes makes [the] job difficult and allows duplicate code as it get confusing when the number of lines increases. Need a feature where [an] error comes if duplicate code is found or [if a] developer tries the same function name.
Read full review
Spotfire
  • The donut chart is I guess a powerful illustrations but I hope it should be done quite simple in Spotfire. But in Spotfire there are lots of steps involve just to build a simple donut chart.
  • Table calculation (like Row or Column Differences) should be made simple or there should be drag and drop function for Table Calculation. No need for scripting.
  • Information Link should be changed. If new columns are added to the table just refreshing the data should be able to capture the new column. No need extra step to add column
Read full review
Likelihood to Renew
Open Source
No answers on this topic
Spotfire
-Easy to distribute information throughout the enterprise using the webplayer. -Ad hoc analysis is possible throughout the enterprise using business author in the webplayer or the thick client. -Low level of support needed by IT team. Access interfaces with LDAP and numerous other authentication methods. -Possible to continually extend the platform with JavaScript, R scripts, HTML, and custom extensions. -Ability to standardize data logic through pre-built queries in the Information Designer. Everyone in the enterprise is using the same logic -Tagging and bookmarking data allows for quick sharing of insights. -Integration with numerous data sources... flat files, data bases, big data, images, etc. -Much improved mapping capability. Also includes the ability to apply data points over any image.
Read full review
Usability
Open Source
Jupyter is highly simplistic. It took me about 5 mins to install and create my first "hello world" without having to look for help. The UI has minimalist options and is quite intuitive for anyone to become a pro in no time. The lightweight nature makes it even more likeable.
Read full review
Spotfire
Basic tasks like generating meaningful information from large sets of raw data are very easy. The next step of linking to multiple live data sources and linking those tables and performing on the fly analysis of the imported data is understandably more difficult.
Read full review
Reliability and Availability
Open Source
No answers on this topic
Spotfire
Even though, it's a rather stable and predictable tool that's also fast, it does have some bugs and inconsistencies that shut down the system. Depending on the details, it could happen as often as 2-3 times a week, especially during the development period.
Read full review
Performance
Open Source
No answers on this topic
Spotfire
Generally, the Spotfire client runs with very good performance. There are factors that could affect performance, but normally has to do with loading large analysis files from the library if the database is located some distance away and your global network is not optimal. Once you have your data table(s) loaded in the client application, usually the application is quite good performance-wise.
Read full review
Support Rating
Open Source
I haven't had a need to contact support. However, all required help is out there in public forums.
Read full review
Spotfire
Support has been helpful with issues. Support seems to know their product and its capabilities. It would also seem that they have a good sense of the context of the problem; where we are going with this issue and what we want the end outcome to be.
Read full review
In-Person Training
Open Source
No answers on this topic
Spotfire
The instructor was very in depth and provided relevant training to business users on how to create visualizations. They showed us how to alter settings and filter views, and provided resources for future questions. However, the instructor failed to cover data sources, connecting to data, etc. While it was helpful to see how users can use the data to create reports, they failed to properly instruct us on how to get the dataset in to begin with. We are still trying to figure out connections to certain databases (we have multiple different types).
Read full review
Online Training
Open Source
No answers on this topic
Spotfire
The online training is good, provides a good base of knowledge. The video demonstrations were well-done and easy to follow along. Provided exercises are good as well, but I think there could be more challenging exercises. The training has also gone up in price significantly in the last 3 years (in USD, which hurts us even more in Canada), and I'm not sure it is worth the money it now costs (it is worth how much it cost 3 years ago, but not double that.)
Read full review
Implementation Rating
Open Source
No answers on this topic
Spotfire
The original architecture I created for our implementation had only a particular set of internal business units in mind. Over the years, Spotfire gained in popularity in our company and was being utilized across many more business units. Soon, its usage went beyond what the original architectural implementation could provide. We've since learned about how the product is used by the different teams and are currently in the middle of rolling out a new architecture. I suggest:
  • Have clearly defined service level agreements with all the teams that will use Spotfire. Your business intelligence group might only need availability during normal working hours, but your production support group might need 24/7 availability. If these groups share one Spotfire server, maintenance of that server might be a problem.
  • Know the different types of data you will be working with. One group might be working with "public" data while another group might work with sensitive data. Design your Library accordingly and with the proper permissions.
  • Know the roles of the users of Spotfire. Will there only be a small set of report writers or does everyone have write access to the Library?
  • ALWAYS add a timestamp prompt to your reports. You don't want multiple users opening a report that will try and pull down millions of rows of data to their local workstations. Another option, of course, is to just hard code a time range in the backing database view (i.e. where activity_date >= sysdate - 90, etc.), but I'd rather educate/train the user base if possible.
  • This probably goes without saying, but if possible, point to a separate reporting database or a logical standby database. You don't want the company pounding on your primaries and take down your order system.
Read full review
Alternatives Considered
Open Source
With Jupyter Notebook besides doing data analysis and performing complex visualizations you can also write machine learning algorithms with a long list of libraries that it supports. You can make better predictions, observations etc. with it which can help you achieve better business decisions and save cost to the company. It stacks up better as we know Python is more widely used than R in the industry and can be learnt easily. Unlike PyCharm jupyter notebooks can be used to make documentations and exported in a variety of formats.
Read full review
Spotfire
Spotfire is significantly ahead of both products from an ETL and data ingestion capability. Spotfire also has substantially better visualizations than Power BI, and although the native visualizations aren't as flexible in Tableau, Spotfire enables users to create completely custom javascript visaualizations, which neither Tableau or Power BI has. Tableau and Power BI are likely only superior to Spotfire with respect to embedded analysis on a website.
Read full review
Scalability
Open Source
No answers on this topic
Spotfire
In an enterprise architecture, if Spotfire Advanced Data services(Composite Studio),data marts can be managed optimally and scalability in a data perspective is great. As the web player/consumer is directly proportional to RAM, if the enterprise can handle RAM requirement accomodating fail over mechanisms appropraitely, it is definitely scalable,
Read full review
Return on Investment
Open Source
  • Positive impact: flexible implementation on any OS, for many common software languages
  • Positive impact: straightforward duplication for adaptation of workflows for other projects
  • Negative impact: sometimes encourages pigeonholing of data science work into notebooks versus extending code capability into software integration
Read full review
Spotfire
  • It is costly, so not suitable for small scale implementations.
  • Dashboards are as good as the developer, so need experience to get most out of it
  • You need to be on Spotfire 11 at least to implement out of the box visualizations
  • Integration with Python and R is a game changer, it comes very handy to onboard data scientists without much hassle
  • performance is exceptionally well.
  • Secure
Read full review
ScreenShots

Spotfire Screenshots

Screenshot of Smart Visual AnalyticsScreenshot of Geospatial AnalyticsScreenshot of Intelligent Data WranglingScreenshot of Point-and-click Data ScienceScreenshot of Real-time Streaming Analytics