PostgreSQL (alternately Postgres) is a free and open source object-relational database system boasting over 30 years of active development, reliability, feature robustness, and performance. It supports SQL and is designed to support various workloads flexibly.
N/A
SingleStore
Score 8.3 out of 10
N/A
SingleStore aims to enable organizations to scale from one to one million customers, handling SQL, JSON, full text and vector workloads in one unified platform.
I still use the ones mentioned above in other use cases, and I believe SingleStore DB (formerly MemSQL)'s potential is in what it does best, in our opinion. It's ideal for massive parallel processing. CDH is good for analytics and when you want to build a report over a huge …
We evaluated SingleStore against MySQL, PostgreSQL, and Druid. We have also quickly looked at ClickHouse and Pinot. We found SingleStore was a polished installation and operation was a breeze. That, coupled with the great performance, led us to select SingleStore very quickly …
SingleStore outperformed both MongoDB and PostgreSQL for OLAP workloads. Its ability to shard data and handle parallel processing of SQL "JOIN" queries across shards is a game changer.
SingleStore (memsql) out performs based on our analysis with sample data sets within org. We could see limitations with other products which SingleStore can overcall like scaling with data while performing with similar SLA. It also has the advantage of row store and column …
SingleStore is just a bigger engine with more capability. Its ability to handle larger data sets with ease is its biggest advantage. These other database solutions are great for smaller scale projects that don't include large data sets but Singlestore greatly out performs in …
It has more APIs and other access methods. It has a multi-version concurrency control (MVCC) Distributed RDBMS that combines an in-memory row-oriented and a disc-based column-oriented storage with patented universal storage to handle transactional and analytical workloads in …
SingleStore is built for fast data ingestion and fast queries against large tables (> billions of rows). This is possible because of the column store engine that SingleStore uses. SingleStore also support a memory engine. Pipelines is also another big advantage. Being able to …
Verified User
Administrative Assistant
Chose SingleStore
SingleStore has outperformed these in speed and performance. However it is more expensive but has been worth the cost so far.
SingleStore provides an abstraction layer in managing a sharded database solution reducing complexity for the FLOWD team. Coupled with the SingleStore Managed Service, we are partnering with SingleStore to provide FLOWD services to various utilities & councils.
Verified User
Employee
Chose SingleStore
SingleStore is eons faster than other database providers, and it absolutely crushes calculations & aggregations. While other providers may have a few quality of life enhancements over SingleStore, the speed benefits of SS far outweigh the cons. At the end of the day, speed …
It seems that SingleStore is good at being able to handle complex queries against large datasets out of the box. In the past, we've had to do quite a bit of manual configuration and database performance tuning, but SingleStore (so far) has seemed to require minimal …
much faster processing of queries than all above-listed databases and having the ability to scale up according to the workload.
Verified User
Professional
Chose SingleStore
SingleStore provides extremely fast ways loading data from different sources (AWS, GCP or Azure), one place monitoring of activities and easy use multiple databases.
PostgreSQL is best used for structured data, and best when following relational database design principles. I would not use PostgreSQL for large unstructured data such as video, images, sound files, xml documents, web-pages, especially if these files have their own highly variable, internal structure.
Good for Applications needing instant insights on large, streaming datasets. Applications processing continuous data streams with low latency. When a multi-cloud, high-availability database is required When NOT to Use Small-scale applications with limited budgets Projects that do not require real-time analytics or distributed scaling Teams without experience in distributed databases and HTAP architectures.
It does not release a patch to have back porting; it just releases a new version and stops support; it's difficult to keep up to that pace.
Support engineers lack expertise, but they seem to be improving organically.
Lacks enterprise CDC capability: Change data capture (CDC) is a process that tracks and records changes made to data in a database and then delivers those changes to other systems in real time.
For enterprise-level backup & restore capability, we had to implement our model via Velero snapshot backup.
Postgresql is the best tool out there for relational data so I have to give it a high rating when it comes to analytics, data availability and consistency, so on and so forth. SQL is also a relatively consistent language so when it comes to building new tables and loading data in from the OLTP database, there are enough tools where we can perform ETL on a scalable basis.
[Until it is] supported on AWS ECS containers, I will reserve a higher rating for SingleStore. Right now it works well on EC2 and serves our current purpose, [but] would look forward to seeing SingleStore respond to our urge of feature in a shorter time period with high quality and security.
The data queries are relatively quick for a small to medium sized table. With complex joins, and a wide and deep table however, the performance of the query has room for improvement.
SingleStore excels in real-time analytics and low-latency transactions, making it ideal for operational analytics and mixed workloads. Snowflake shines in batch analytics and data warehousing with strong scalability for large datasets. SingleStore offers faster data ingestion and query execution for real-time use cases, while Snowflake is better for complex analytical queries on historical data.
There are several companies that you can contract for technical support, like EnterpriseDB or Percona, both first level in expertise and commitment to the software.
But we do not have contracts with them, we have done all the way from googling to forums, and never have a problem that we cannot resolve or pass around. And for dozens of projects and more than 15 years now.
The support deep dives into our most complexed queries and bizarre issues that sometimes only we get comparing to other clients. Our special workload (thousands of Kafka pipelines + high concurrency of queries). The response match to the priority of the request, P1 gets immediate return call. Missing features are treated, they become a client request and being added to the roadmap after internal consideration on all client needs and priority. Bugs are patched quite fast, depends on the impact and feasible temporary workarounds. There is no issue that we haven't got a proper answer, resolution or reasoning
The online training is request based. Had there been recorded videos available online for potential users to benefit from, I could have rated it higher. The online documentation however is very helpful. The online documentation PDF is downloadable and allows users to pace their own learning. With examples and code snippets, the documentation is great starting point.
We allowed 2-3 months for a thorough evaluation. We saw pretty quickly that we were likely to pick SingleStore, so we ported some of our stored procedures to SingleStore in order to take a deeper look. Two SingleStore people worked closely with us to ensure that we did not have any blocking problems. It all went remarkably smoothly.
Although the competition between the different databases is increasingly aggressive in the sense that they provide many improvements, new functionalities, compatibility with complementary components or environments, in some cases it requires that it be followed within the same family of applications that performs the company that develops it and that is not all bad, but being able to adapt or configure different programs, applications or other environments developed by third parties apart is what gives PostgreSQL a certain advantage and this diversification in the components that can be joined with it, is the reason why it is a great option to choose.
Greenplum is good in handling very large amount of data. Concurrency in Greenplum was a major problem. Features available in SingleStore like Pipelines and in memory features are not available in Greenplum. Gemfire was not scaling well like SingleStore. Support of both Greenplum and Gemfire was not good. Product team did not help us much like the ones in SingleStore who helped us getting started on our first cluster very fast.
Easy to administer so our DevOps team has only ever used minimal time to setup, tune, and maintain.
Easy to interface with so our Engineering team has only ever used minimal time to query or modify the database. Getting the data is straightforward, what we do with it is the bigger concern.
As the overall performance and functionality were expanded, we are able to deliver our data much faster than before, which increases the demand for data.
Metadata is available in the platform by default, like metadata on the pipelines. Also, the information schema has lots of metadata, making it easy to load our assets to the data catalog.