IBM® watsonx™ Orchestrate® leverages AI to automate complex workflows. The solution helps build, deploy, and manage AI assistants and agents. It offers a catalogue of pre-built agents and tools, low-code agent builder, multi-agent collaboration capabilities, and integrations with enterprise apps.
$500
per month
OpenAI API Platform
Score 9.3 out of 10
N/A
The OpenAI API platform provides a simple interface to AI models for text generation, natural language processing, computer vision, and other purposes.
$0
per 1K tokens
Pricing
IBM watsonx Orchestrate
OpenAI API Platform
Editions & Modules
Essential
$500
per month per subscription
Essentials
$500
per month Per subscription
Standard
Enterprise
Standard
Enterprise
per month Per subscription
Ada
$0.0008
per 1K tokens
Babbage
$0.0012
per 1K tokens
Curie
$0.0060
per 1K tokens
Davinci
$0.0600
per 1K tokens
Offerings
Pricing Offerings
IBM watsonx Orchestrate
OpenAI API Platform
Free Trial
Yes
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
Yes
No
Entry-level Setup Fee
Optional
No setup fee
Additional Details
IBM watsonx Orchestrate can be deployed and run on IBM Cloud, AWS, or on-premises. Prices shown are indicative, may vary by country, exclude any applicable taxes and duties, and are subject to product offering availability in a locale.
It focus on enterprise level flexibility and it also provides us cloud and on prem both support which helps in integrating with legacy and modern systems. It has better compliance standards than other competitors. Better data governance and cost effective AI model which is very …
In our case, it is well-suited for workday integration, which allows us to automate the entire workflow. However, we are still working on the O9 platform integration, which we feel is less appropriate, and integrating the workflow into the platform.
For smaller organizations that run lean and would like to get to deploy a solution quickly. This is a solution that is easy and quick to develop. It has a good amount of customization. However, for advanced customization this might not be a good solution. I suggest experimenting with OpenAI API and then if the experimentation is successful then it is a good idea to optimize and try other LLM models.
New and improved natural language processing yielding better results helps the assistants understand the intention behind the query.
Preserves context of communication, allowing the customers to establish inquiries on the website and continue on the mobile app without having extra informational input.
Intelligent conversations mean that complex paths that are branched based on the user's inputs allow for a much more natural flow of the conversation than fixed scripts.
I think that it needs to be able to integrate better with the knowledge catalogs. It currently provides a default database, which isn't quite large enough for enterprise use. We can connect that then to an external source, but it'd be nice if we could able just to instantiate one straight away.
Currently we are using to develop chatbots based on client provided flow what kind chatbot required for client either button or free text chatbots. we will decided accordingly flow and develop chatbot using IBM Watson. We will integrated custom components if required which is not present in library. Action flow and dialog flow we are currently in chatbot.
With the growing use of AI and chatbots, it's very easy to use, and the conversational language makes it easier than keyword searches in a document. The contextual language processing is impressive. It's easy to integrate into our internal portal. The use of this tool would depend on each company's security and data sensitivity.
Easy to setup, develop and deploy. The payload for the API is simple and has all the inputs required for simple projects. There are a good number of options of LLM models to optimize for speed, cost or quality of the answers. A larger token input might improve the overall usability.
To develop chatbots based on client provided flow what kind chatbot required for client either button or free text chatbots. we will decided accordingly flow and develop chatbot using IBM Watson. We will integrated custom components if required which is not present in library. IBM Watson library anyone can easily learn and develop chatbots.
We've rarely had to engage support, but they've always been prompt in responding and very attentive. Support experiences have been extremely positive (but we're mostly happy that we just don't have any cause to routinely need support in the first place!).
Make has more community of workflows to follow that have been redeveloped and are available for download. Selecting WxO is based on our trust level with IBM and the propositions of the Granite model being less biased, more business trained, and the ecosystem allowing for expansion with Assistant and Discovery.
Anthropic is only the best for coding and its really really expensive. So, if you're not making a coding app, I would stay away from it. On the other hand, Gemini models are dirt cheap but come with a bit of performance limitations, so i would use it for big volume non sofisticated use cases. The OpenAI API platform excels at providing best in class performance models, at not outrageous anthropic-like pricing.
From past 3+ years I am using IBM Watson in our current project easily can implement and manage and monitor user how their using. Is there and update also just update dialog is just enough to change no need to touch any other templates. Multiple language will support, and action and dialog speak recognize chatbot we can create as per client requirement. Overall, as of now good experience with IBM Watson.
By automating tasks that would otherwise require human intervention, organizations may achieve cost savings in terms of labor, especially for handling large volumes of routine inquiries.
Virtual assistants can handle a large number of simultaneous interactions, making them scalable to accommodate growing customer bases and increasing workloads without a linear increase in staffing.