SAP HANA is an application that uses in-memory database technology to process very large amounts of real-time data from relational databases, both SAP and non-SAP, in a very short time. The in-memory computing engine allows HANA to process data stored in RAM as opposed to reading it from a disk which means that the data can be accessed in real time by the applications using HANA. The product is sold both as an appliance and as a cloud-based software solution.
$0.95
per month Capacity Units
Titan
Score 8.0 out of 10
N/A
Titan is an open-source distributed graph database developed by Aurelius. Aurelius is now part of Datastax (since February 2015).
It is well organized. One can use it for the company's portfolio management. Various tasks can be done for managerial purposes. One can track the material from start to end product: for example, raw material, packing material & consumable material to formulated bulk and formulated drug product. This can help to manage spending as well as finding costing of the product.
Titan is definitely a good choice, but it has its learning curve. The documentation may lack in places, and you might have to muster answers from different sources and technologies. But at its core, it does the job of storing and querying graph databases really well. Remember that titan itself is not the whole component, but utilizes other technologies like cassandra, gremlin, tinkerpop, etc to do many other things, and each of them has a learning curve. I would recommend titan for a team, but not for a single person. For single developer, go with Neo4j.
Real-time reporting and analytics on data: because of its in-memory architecture, it is perfect for businesses that need to make quick decisions based on current information.
Managing workload with complex data: it can handle a vast range of data types, including relational, documental, geospatial, graph, vector, and time series data.
Developing and deploying intelligent data applications: it provides various tools for such applications and can be used for machine learning and artificial intelligence to automate tasks, gain insights from data, and make predictions.
Requires higher processing power, otherwise it won't fly. How ever computing costs are lower. Incase you are migrating to cloud please do not select the highest config available in that series . Upgrading it later against a reserved instance can cost you dearly with a series change
Lack of clarity on licensing is one major challenge
Unless S/4 with additional features are enabled mere migration HANA DB is not a rewarding journey. Power is in S/4
The community is lacking deep documentation. I had to spend many nights trying to figure many things on my own. As graph databases will grow popular, I am sure this will be improved.
Not enough community support. Even in SO you might not find many questions. Though there are some users in SO who quickly answer graph database questions. Need more support.
We would rate our likelihood of renewing at 9/10. SAP HANA Cloud has proven to be a highly reliable and scalable data platform that consistently delivers strong performance. Its seamless integration with our overall SAP landscape, combined with improved analytics and real-time data capabilities, makes it a core part of our long-term technology strategy.
It is a very useful cloud database platform which provides you faster data processing, scalability , global availability and advanced analytical capabilities. It offers integrated environment for enterprise applications which helps you to manage multiple systems easily. For end user, it provides a simplified user experience with direct navigation and personalization
One specific example of how the support for SAP HANA Cloud impacted us is in our efforts to troubleshoot and resolve technical issues. Whenever we encountered an issue or had a question, the support team was quick to respond and provided us with clear and actionable guidance. This helped us avoid downtime and keep our analytics operations running smoothly.
Professional GIS people are some of the most risk-averse there are, and it's difficult to get them to move to HANA in one step. Start with small projects building to 80% use of HANA spatial over time.
I have deep knowledge of other disk based DBMSs. They are venerable technology, but the attempts to extend them to current architectures belie the fact they are built on 40 year old technology. There are some good columnar in-memory databases but they lack the completeness of capability present in the HANA platform.
To be honest, titan is not as popular as Neo4j, though they do the same thing. In my personal opinion, titan has lot of potential, but Neo4j is easier to use. If the organization is big enough, it might choose titan because of its open source nature, and high scalability, but Neo4j comes with a lot of enterprise and community support, better query, better documentation, better instructions, and is also backed by leading tech companies. But titan is very strong when you consider standards. Titan follows gremlin and tinkerpop, both of which will be huge in future as more graph database vendors join the market. If things go really well, maybe Neo4j might have to support gremlin as well.