HBase
Apache HBase
Overview
Recent Reviews
Awards
Products that are considered exceptional by their customers based on a variety of criteria win TrustRadius awards. Learn more about the types of TrustRadius awards to make the best purchase decision. More about TrustRadius Awards
Popular Features
View all 7 featuresAvailability (5)
7.8
78%
Security (5)
7.8
78%
Performance (5)
7.1
71%
Concurrency (5)
7.0
70%
Video Reviews
Leaving a video review helps other professionals like you evaluate products. Be the first one in your network to record a review of HBase, and make your voice heard!
Pricing
View all pricingEntry-level set up fee?
- No setup fee
Offerings
- Free Trial
- Free/Freemium Version
- Premium Consulting / Integration Services
Would you like us to let the vendor know that you want pricing?
11 people want pricing too
Alternatives Pricing
Features Scorecard
NoSQL Databases
7.7
77%
Product Details
What is HBase?
The Apache HBase project's goal is the hosting of very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware. Apache HBase is an open-source, distributed, versioned, non-relational database modeled after Google's Bigtable.
HBase Technical Details
Operating Systems | Unspecified |
---|---|
Mobile Application | No |
Comparisons
View all alternativesCompare with
Frequently Asked Questions
What is HBase?
The Apache HBase project's goal is the hosting of very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware. Apache HBase is an open-source, distributed, versioned, non-relational database modeled after Google's Bigtable.
What is HBase's best feature?
Reviewers rate Scalability highest, with a score of 8.6.
Who uses HBase?
The most common users of HBase are from Enterprises (1,001+ employees) and the Computer Software industry.
Reviews and Ratings
(32)
Reviews
(1-10 of 10)- Popular Filters
Companies can't remove reviews or game the system. Here's why
March 16, 2019
HBase as the brother of big data
- HBase stores the big data in a great manner and it is horizontally scalable.
- Another major reason is security, we can secure the HBase database using Atlas, Ranger.
- Store any format of data like structured, semi-structured and unstructured.
- Consistency
- Strongly consistent reads and writes are provided by HBase, we use it for high-speed requirements if we do not need RDBMS-supported features such as full transaction support or typed columns.
- There are very few commands in HBase.
- Stored procedures functionality is not available so it should be implemented.
- HBase is CPU and Memory intensive with large sequential input or output access while as Map Reduce jobs are primarily input or output bound with fixed memory. HBase integrated with Map-reduce jobs will result in random latencies.
December 14, 2018
An Amazing Experience
- Scalable and truly non-relational data
- HBase operations run in real-time on its database rather than MapReduce jobs
- Scales linearly to support billions of rows with millions of columns
- Difficult for people who are building custom tools for SQL like purposes to understand HBase
- Cannot be used for transactional datasets
December 13, 2018
HBASE!!!
- Excellent for read performance
- Great store of file format of avro
- Easy integration into mapreduce
- Replication ability
- Write performance
- Performance support for parquet file format. supports, but performance wise still not there
- API / library availability for spark, rather than creating a new library for it
April 19, 2018
No SQL Database to Support Near Real Time Analytics
- Faster lookup of records using the row keys. It helped to fetch thousands of records in a much faster way using the row keys
- As it is a columnar data store, helped us to improve the query performance and aggregations
- Sharding helps us to optimize the data storage and retrieval. HBase provides automatic or manually sharding of tables.
- Dynamic addition of columns and column family helped us to modify the schema with ease.
- Identified issues with Hmaster when handling a huge number of nodes
- Cannot have multiple indexes as row key is the only column which could be indexed.
- HBase does not support partial row keys which limit its query performance.
April 06, 2018
HBase, The Only Enterprise NoSQL Choice
- Scalability. HBase can scale to trillions of records.
- Fast. HBase is extremely fast to scan values or retrieve individual records by key.
- HBase can be accessed by standard SQL via Apache Phoenix.
- Integrated. I can easily store and retrieve data from HBase using Apache Spark.
- It is easy to set up DR and backups.
- Ingest. It is easy to ingest data into HBase via shell, Java, Apache NiFi, Storm, Spark, Flink, Python and other means.
- Not for small data
- Requires a cluster
September 13, 2017
HBase
- HBase data access and retrieval only gets better with larger scale.
- Fault tolerance is built in, if you have unreliable hardware, HBase will make every effort to keep your data online.
- Extremely fast key lookups and write throughput.
- Multi-tenancy is still work in progress
- Usability and beginner friendliness
- It has a bad reputation of being complex
April 14, 2017
HBase - good for UI performance from a Hadoop cluster
- Very fast query capability
- Resilient: by leveraging hdfs, hbase can handle server failure pretty well
- Very schema dependent - you have to carefully choose your schema and key strategy in order to get good distribution and performance.
- Over aggressive rebalancing - if you have to bounce your system - for example - hbase will spend quite a while trying to rebalance all the data as each server comes online.
April 04, 2017
Support for HBase
- Good write throughput
- Good horizontal scalability
- Easy to operate on
- Better tool for investigating the key-value content for data validation.
- Better tool for row key monitoring since our key contains timestamps.
- Better tool for system-level metric monitoring.
June 20, 2016
HBase - a scaleable, consistent data store
- Scalability
- Strong consistency
- SQL layer
- Too many processes
- Difficult to manage many clusters
November 25, 2015
Apache HBase: Through the Looking Glass!
- Apache HBase is a widely used java based distributed NoSQL environment on Apache Hadoop.
- While there has been growing interest and efforts in in memory computing, there are investments on Apache Hadoop (or hadoop provider variants) across domains. So that is a large market.
- I worked on HBase for applications which needed to provide strong consistency and interact with Apache Hadoop.
- You could encounter issues like region is not online or NotServingException or region server going down, out of memory errors.
- As HBase works with Zookeeper, care needs to be taken it is correctly set up. Most issues pertain usually to environment setup, configuration, shared load on system or maintenance.
- The performance across workloads when evaluated against other NoSQL variants was not best in class, this is most times okay, but can be improved.
- If you use Apache HBase, and want to upgrade it for some features then you might need to do a compatibility check against your Apache Hadoop and Apache HBase versions, there are dependency to think about.
- The HBase master slave becomes the single point of failure, and may not be a preferred design.It is not highly available system.
- Last I checked it did not have well tested easy integrations with Spark, and that can help.