MonetDB is an open source column-oriented relational database management system issued and supported by the Dutch MonetDB development team.
N/A
SAP HANA Cloud
Score 8.8 out of 10
N/A
SAP HANA is an application that uses in-memory database technology to process very large amounts of real-time data from relational databases, both SAP and non-SAP, in a very short time. The in-memory computing engine allows HANA to process data stored in RAM as opposed to reading it from a disk which means that the data can be accessed in real time by the applications using HANA. The product is sold both as an appliance and as a cloud-based software solution.
MonetDB is great when you are performing adhoc queries on a large set of data. For example, if you store data in a typical RDBMS such as MySQL or Postgres and want to join large tables for analytics but the query runs unacceptably slow then MonetDB can act as a second database to offload complex queries. Based on my experience, it may not be a production-ready database since there aren't many DBAs familiar with it and due to lack of documentation, maintenance can become a little tricky.
It is well organized. One can use it for the company's portfolio management. Various tasks can be done for managerial purposes. One can track the material from start to end product: for example, raw material, packing material & consumable material to formulated bulk and formulated drug product. This can help to manage spending as well as finding costing of the product.
Real-time reporting and analytics on data: because of its in-memory architecture, it is perfect for businesses that need to make quick decisions based on current information.
Managing workload with complex data: it can handle a vast range of data types, including relational, documental, geospatial, graph, vector, and time series data.
Developing and deploying intelligent data applications: it provides various tools for such applications and can be used for machine learning and artificial intelligence to automate tasks, gain insights from data, and make predictions.
This is an open source software so there are obvious drawbacks, the biggest of which is a lack of documentation.
MonetDB does not seem to be well known outside of the academic environment so there is less information when you are searching for answers of any type.
I'd like to see more use cases and/or best practices so that commercial companies like ours can optimally use all of its highly performant features.
The code is written in C/C++ and this can be negative if you are a mainly java-shop and need UDF - User Defined Function.
Requires higher processing power, otherwise it won't fly. How ever computing costs are lower. Incase you are migrating to cloud please do not select the highest config available in that series . Upgrading it later against a reserved instance can cost you dearly with a series change
Lack of clarity on licensing is one major challenge
Unless S/4 with additional features are enabled mere migration HANA DB is not a rewarding journey. Power is in S/4
We would rate our likelihood of renewing at 9/10. SAP HANA Cloud has proven to be a highly reliable and scalable data platform that consistently delivers strong performance. Its seamless integration with our overall SAP landscape, combined with improved analytics and real-time data capabilities, makes it a core part of our long-term technology strategy.
It is a very useful cloud database platform which provides you faster data processing, scalability , global availability and advanced analytical capabilities. It offers integrated environment for enterprise applications which helps you to manage multiple systems easily. For end user, it provides a simplified user experience with direct navigation and personalization
One specific example of how the support for SAP HANA Cloud impacted us is in our efforts to troubleshoot and resolve technical issues. Whenever we encountered an issue or had a question, the support team was quick to respond and provided us with clear and actionable guidance. This helped us avoid downtime and keep our analytics operations running smoothly.
Professional GIS people are some of the most risk-averse there are, and it's difficult to get them to move to HANA in one step. Start with small projects building to 80% use of HANA spatial over time.
We have used Five9 in my previous company but on a much smaller scale. It was more expensive, however we were using it for a max of 50 employees, now we need a much bigger platform. We also used Five9 for other things, like phone dialers etc. so it was a little different.
I have deep knowledge of other disk based DBMSs. They are venerable technology, but the attempts to extend them to current architectures belie the fact they are built on 40 year old technology. There are some good columnar in-memory databases but they lack the completeness of capability present in the HANA platform.
If you are familiar with a general database concept and played with open source products before then MonetDB will give you immediate return in terms of productivity since developers can quickly develop and verify their test cases involving back-end database with a large sample data set.
There is a stiff learning curve due to lack of documentation and sparse information available on the internet.
Overall experience has been positive since MonetDB gives you another option when it comes to building out a data warehouse.