Algolia offers AI-powered solutions to improve online search and discovery experiences, with tools for business teams and APIs for developers that help to improve user engagement and conversions across websites, apps, and e-commerce platforms.
$0
per month 10k search requests + 100k records
Apache Solr
Score 8.7 out of 10
N/A
Apache Solr is an open-source enterprise search server.
N/A
Pricing
Algolia
Apache Solr
Editions & Modules
Build
Free
per month Up to 10,000 search requests + 1 Million records
Grow Plus
Free / Pay as you go
per month 10K searches/month & 100K records included; $1.75 per extra 1K searches, $0.40 per extra 1K records
Grow
Free / Pay as you go
per month 10K search requests & 100K records included; $0.50 per extra 1K searches, $0.40 per extra 1K records
Elevate
custom
per year
Elevate
Custom
per year Custom search requests and records — volume-based discounts available
No answers on this topic
Offerings
Pricing Offerings
Algolia
Apache Solr
Free Trial
Yes
No
Free/Freemium Version
Yes
No
Premium Consulting/Integration Services
Yes
No
Entry-level Setup Fee
Optional
No setup fee
Additional Details
Pay as you go, scale instantly, or upgrade anytime for advanced features and capabilities.
We selected Algolia because it was ridiculously fast and we liked the direction the company was going. We also did not want to deal with a self hosted solution like Solr.
I'd definitely recommend Algolia for a business operating in the ecommerce space and looking to integrate search quickly. Using the tool is easy to set up and works well. Out of the box you can have search, autocomplete, and recommendations that are all integrated. If you integrate directly, Algolia works well for also using their internal A/B test system. Areas where Algolia can be harder to use are in user-generated marketplaces. On a site where you control / own / produce all your inventory of results, you are solely optimizing for revenue/conversion. When you have a platform where there are different creators for each item, you need to balance revenue optimization with trying to support the business goals of the sellers on your marketplace platform. Algolia offers less tooling there which can be difficult and will require you build additional tooling/monitoring for that. Given that need, you likely cannot use all of Algolia's UI tools like A/B testing.
Solr spins up nicely and works effectively for small enterprise environments providing helpful mechanisms for fuzzy searches and facetted searching. For larger enterprises with complex business solutions you'll find the need to hire an expert Solr engineer to optimize the powerful platform to your needs. Internationalization is tricky with Solr and many hosting solutions may limit you to a latin character set.
Users get instant feedback as they type, even with complex filters like brand, model, price range, and financing eligibility. This speed significantly improves engagement and reduces bounce.
A user searching for “Camry 2020” or even “Camary 20” still sees relevant Toyota Camry listings from 2020. This reduces friction, especially on mobile where spelling errors are common.
Algolia handles multi-faceted filters efficiently. For example, a user can filter by location, transmission type, color, or inspection status without any lag.
We fine-tune the ranking of search results based on what matters to our business—like prioritizing cars with higher margins or better availability in key cities.
We can experiment with different ranking formulas or UI variations to improve KPIs like lead conversion or time-to-first-interaction.
Easy to get started with Apache Solr. Whether it is tackling a setup issue or trying to learn some of the more advanced features, there are plenty of resources to help you out and get you going.
Performance. Apache Solr allows for a lot of custom tuning (if needed) and provides great out of the box performance for searching on large data sets.
Maintenance. After setting up Solr in a production environment there are plenty of tools provided to help you maintain and update your application. Apache Solr comes with great fault tolerance built in and has proven to be very reliable.
Recent pricing model changes made Algolia considerably more expensive. I understand that companies change their models all the time, but my plan almost doubled in price overnight. They let me keep my legacy plan for as long as I wanted, but I had already outgrown it, so a small increase in demand caused big price spikes. It's still cheap for what it is though.
The documentation is generally good, but sometimes hard to navigate. I was trying to find examples of how to combine geo-queries with normal ones, and I couldn't find an example, but it wasn't actually hard to figure out.
Some of the advanced features can be hard to understand at first. This isn't really a con, as it just means Algolia is loaded with features, but I was a bit overwhelmed the first time I tried to customize an index.
These examples are due to the way we use Apache Solr. I think we have had the same problems with other NoSQL databases (but perhaps not the same solution). High data volumes of data and a lot of users were the causes.
We have lot of classifications and lot of data for each classification. This gave us several problems:
First: We couldn't keep all our data in Solr. Then we have all data in our MySQL DB and searching data in Solr. So we need to be sure to update and match the 2 databases in the same time.
Second: We needed several load balanced Solr databases.
Third: We needed to update all the databases and keep old data status.
If I don't speak about problems due to our lack of experience, the main Solr problem came from frequency of updates vs validation of several database. We encountered several locks due to this (our ops team didn't want to use real clustering, so all DB weren't updated). Problem messages were not always clear and we several days to understand the problems.
Algolia is a great tool, we didn't have to build a custom search platform (using Elasticsearch for example) for a while. It has great flexibility and the set of libraries and SDKs make using it really easy. However, there are two major blockers for our future: - Their pricing it's still a bit hard to predict (when you are used to other kind of metrics for usage) so I really recommend to take a look at it first. - Integrating it within a CI/CD pipeline is difficult to replicate staging/development environments based on Production.
Algolia has a good interface and they have done some improvements. However, some non technical users have a challenging time in the use for the first days of learning. But once the main aspects are learned is a straight forward operation
It takes some time to deploy and currectly maintein it. And also, to learn how to use and integrate in the enviroment as well. Once you get theses steps done, it usability is very simple, and almost of the time it don't require no further attention on it. Even for maintence, if you deploy it on a cluster mode, it is very reliable and easy to take one host down.
Performance is always a major concern when integrating services with our client's websites. Our tests and real-world experience show that Algolia is highly performant. We have more extremely satisfied with the speed of both the search service APIs and the backend administrative and analytic interface.
It’s non existent. No tech support and no customer service… my application was blocked and is currently inactive causing huge business disruption, and I’m still waiting days later for a response to an issue which could be resolved very very quickly if only they would respond. Very poor from a company of that size
While AWS's offering is a typically cheaper solution, it requires a lot of work to gain any of the core features of Algolia. The cost of dev time and long-term maintenance would be more than the costs incurred with Algolia, which is why it made the most sense financially. On the engineering side, we could give our stakeholders access to Algolia to adjust the indices themselves, which would allow us to focus on other work.
We tried to use both Elasticsearch and Swiftype with Drupal 8 but there are currently no good modules that integrate Drupal with those solutions. So Solr was really the only option for a Drupal 8 web site. It's not as easy to learn or use as Swiftype, but in the end I think it will be a little less expensive and offer more customization and flexibility.
Overall is a scalable tool as the environment and the backend functions are the same and many things are done directly on the tool so without the need of further specific developments. However some things could be improved such as documentation for integration that could help in doing whitelabel solutions
Users who had abandoned our product (attributing slow search speeds as the reason) returned to us thanks to Algolia
We used Algolia as our product's backbone to relaunch it, making it the center of all search on our platform which paid off massively.
Considering we relaunched our product, with Aloglia functioning as its engine, we got a lot of press coverage for our highly improved search speeds.
One negative would be how important it is to read the fine print when it comes to the technical documentation. As pricing is done on the basis of records and indexes, it is not made apparent that there is a size limit for your records or how quickly these numbers can increase for any particular use case. Be very wary of these as they can quite easily exceed your allotted budget for the product.