TrustRadius
JMP is a division of SAS and the JMP family of products provide statistical discovery tools linked to dynamic data visualizations.https://dudodiprj2sv7.cloudfront.net/product-logos/Zs/We/FSHZFA1VIMV1.JPEGJMP: Excellent tool for regression!I worked in student-led marketing consulting firm and I led the Analytics and Insights team, and we used JMP for data analysis. There were around 50 people in the organization, but only the ones in the Analytics and Insights department used JMP. We received requests from the account managers and we then ran some analysis for them depending on the project need.,1 - Coding is not required: I've used other tools (Python, Mathlab, and R) and coding is required for all of them. With JMP, you just load the data, see it in a table and start working right away. I see it as a statistical version of MS Excel. 2 - Powerful and easy regression: I love how easy, intuitive and powerful JMP is for running regression models. It was great for trying to fit the best regression models. 3 - Smooth OS integration: I use in both macOS and Windows and both run just fine!,1 - Not the most user friendly: In comparison to other tools (Azure ML, for example), JMP is not the most user friendly. 2 - Features are not super comprehensive: Don't get me wrong, JMP has a lot of features! But when you compare against R, which is open source - so there are a lot of people adding new libraries frequently, JMP might lack some things you might want (especially the most recent ones). 3 - Cost: In comparison to others (Azure ML is super cheap, R and Python are free), JMP can seem expensive.,9,ROI: Even if the cost can be high, the insights you get out of the tool would definitely be much more valuable than the actual cost of the software. In my case, most of the results of your analysis were shown to the client, who was blown away, making the money spent well worth for us. Potential negative: If you are not sure your team will use it, there's a chance you will just waste money. Sometimes the IT department (usually) tries to deploy a better tool for the entire organization but they keep using the old tool they are used too (most likely MS Excel).,RStudio, IBM SPSS, Microsoft Azure Machine Learning Workbench and KNIME Analytics Platform,Microsoft Azure Machine Learning Workbench, RStudio, Tableau Desktop, Tableau Online, Domo, Adobe AnalyticsJMP away from cumbersome Excel workbooksJMP is being used to track a wide array of real-time production data at our biotech company. It is currently used by one department (technical operations) in order to quantify failures and track efficiencies with regard to our production processes. These include sales rates/times, creating survival curves, organizing multivariable processes, addressing multicollinearity, technician efficiencies and other aspects of our production. It mainly serves as a conduit to create quick snapshots of overall production efficiency that have replaced cumbersome Excel spreadsheets, as JMP can process basic graphs easier and faster than Excel.,JMP has "drag and drop" graph building functions that can filter variables and make adjustments instantaneously. JMP has its own scripting language that can link to an Excel spreadsheet and instantaneously create report-outs There is a low overall learning curve, especially if you are familiar with other statistical programs or more advanced Excel functions Huge support network and prompt response time from SAS. Also, many third party JMP experts that can help you create report outs or write more complicated scripts.,It would be nice if JMP had multiple sheets in order to create graphs from pivot tables. The overall aesthetic is pretty weak, compared to Excel, especially if you are trying to make a more polished presentation Changing variables in the graph builder can cause you to lose your formatting, which can be annoying and time-consuming if you make a mistake,8,JMP has sped up almost all of the report-outs we were creating from Excel. Once the script is written, you won't have to do anything besides update your database(s). JMP really makes you concatenate column information. It definitely makes everything faster as soon as you understand how to organize your initial data table. Some graphs from Excel (especially time to survival) are quite difficult to censor and separate multivariate data, so you probably won't be able to get rid of Excel completely.,,FileMaker Pro, Microsoft Office 2016, PrISM,10,No,Every aspect of my communication with SAS has been outstanding. They really want you to succeed and prove it by providing the user with multiple opportunities to meet one on one with their staff.JMP for preliminary data analysisI use JMP as a starting point for data analysis and exploration. It is not being used across the organization, rather on a case-by-case basis.,Save scripts directly to the data table so that the user can recreate the steps to create reports, charts, when the underlying data changes. Multiple options for graphing and plotting and flexible configuration options. Detailed instructions and explanations in the help document.,Simple quick filters at the top of each column of the data table. Update tutorial materials to match the layout of the newest version (13.1), or provide a quick reference guide showing what changed between the previous version and the current one. Window arrangement could be improved and automated. When multiple windows are open (tables, charts, reports, journals) it could get confusing to get to the right place quickly.,9,Positive impact. JMP facilitates the initial stages of data exploration and analysis.JMP is awesome!It is just being just used in my department. We use it for all of our quantitative analysis from segmentations to product development to figuring out if a marketing solution is being optimized. Overall, we use it to address anything for our clients and anything internal as well.,Quant. DOE Regression,All the cool stuff is in pro and that costs significantly more especially with JMP 13.,10,None, it's priced better than competitors,SAS, R, Tableau and IBM SPSS,IBM SPSSUpgrade your problem-solving and research capabilities with JMPWe assist our clients in accelerating research, both R&D, routine improvement initiatives as well as root cause analysis. JMP is central to this effort in two ways. First, we help them exploit the tool and secondly, we build and integrate JMP with databases and server-based software to create analytical systems that imbed analytics into standard operating procedures.,JMP is designed from the ground-up to be a tool for analysts who do not have PhDs in Statistics without in anyway "dumbing down" the level of statistical analysis applied. In fact, JMP operationalizes the most advanced statistical methods. JMP's design is centred on the JMP data table and dialog boxes. It is data focused not jargon-focussed. So, unlike other software where you must choose the correct statistical method (eg. contingency, ANOVA, linear regression, etc.), with JMP you simply assign the columns in a dialog into roles in the analysis and it chooses the correct statistical method. It's a small thing but it reflects the thinking of the developers: analysts know their data and should only have to think about their data. Analyses should flow from there. JMP makes most things interactive and visual. This makes analyses dynamic and engaging and obviates the complete dependence on understanding p-values and other statistical concepts(though they are all there) that are often found to be foreign or intimidating. One of the best examples of this is JMP's profiler. Rather than looking at static figures in a spreadsheet, or a series of formulas, JMP profiles the formulas interactively. You can monitor the effect of changing factors (Xs) and see how they interact with other factors and the responses. You can also specify desirability (maximize, maximize, match-target) and their relative importances to find factor settings that are optimal. I have spent many lengthy meetings working with the profiler to review design and process options with never a dull moment. The design of experiments (DOE) platform is simply outstanding and, in fact, the principal developers of it have won several awards. Over the last 15 years, using methods broadly known as an "exchange algorithm," JMP can create designs that are far more flexible than conventional designs. This means, for example, that you can create a design with just the interactions that are of interest; you can selectively choose those interactions that are not of interest and drop collecting their associated combinations. Classical designs are rigid. For example, a Box-Benhken or other response surface design can have only continuous factors. What if you want to investigate these continuous factors along with other categorical factors such as different categorical variables such as materials or different furnace designs and look at the interaction among all factors? This common scenario cannot be handled with conventional designs but are easily accommodated with JMP's Custom DOE platform. The whole point of DOE is to be able to look at multiple effects comprehensively but determine each one's influence in near or complete isolation. The custom design platform, because it produces uniques designs, provides the means to evaluate just how isolated the effects are. This can be done before collecting data because this important property of the DOE is a function of the design, not the data. By evaluating these graphical reports of the quality of the design, the analyst can make adjustments, adding or reducing runs, to optimize cost, effort and expected learnings. Over the last number of releases of JMP, which appear about every 18 months now, they have skipped the dialog boxes to direct, drag-and-drop analyses for building graphs and tables as well as Statistical Process Control Charts. Interactivity such as this allows analysts to "be in the moment." As with all aspects of JMP, they are thinking of their subject matter without the cumbersomeness associated with having to think about statistical methods. It's rather like a CEO thinking about growing the business without having to think about every nuance and intricacy of accounting. The statistical thinking is burned into the design of JMP. Without data analysis is not possible. Getting data into a situation where it can be analyzed can be a major hassle. JMP can pull data from a variety of sources including Excel spreadsheets, CSV, direct data feeds and databases via ODBC. Once the data is in JMP it has all the expected data manipulation capabilities to form it for analysis. Back in 2000 JMP added a scripting language (JMP Scripting Language or JSL for short) to JMP. With JSL you can automate routine analyses without any coding, you can add specific analyses that JMP does not do out of the box and you can create entire analytical systems and workflows. We have done all three. For example, one consumer products company we are working with now has a need for a variant of a popular non-parametric analysis that they have employed for years. This method will be found in one of the menus and appear as if it were part of JMP to begin with. As for large systems, we have written some that are tens of thousands of lines that take the form of virtual labs and process control systems among others. JSL applications can be bundled and distributed as JMP Add-ins which make it really easy for users to add to their JMP installation. All they need to do is double-click on the add-in file and it's installed. Pharmaceutical companies and others who are regulated or simply want to control the JMP environment can lock-down JMP's installation and prevent users from adding or changing functionality. Here, add-ins can be distributed from a central location that is authorized and protected to users world-wide. JMP's technical support is second to none. They take questions by phone and email. I usually send email knowing that I'll get an informed response within 24 hours and if they cannot resolve a problem they proactively keep you informed about what is being done to resolve the issue or answer your question.,JMP does a lot and can be intimidating for new users. New users and their managers need to understand that it’s unlikely that anyone will use all of JMP's capabilities in their work. Some uses are very limited. But it’s not important how much of the whole JMP product and capabilities you use but rather what use of the product contributes. We have seen time and again where organizations up their game analytically because they are using JMP. Though JMP makes these methods accessible by way of visualization and interactivity, there is still a learning curve involved. For example, JMP does a great job with time series analyses allowing manufacturers to find cyclical patterns that lead to yield hits. Using it in JMP is easy but engineers need to understand the concepts behind it to exploit it. JMP data tables are proprietary and I'm not sure that any other software can open native JMP files. Perhaps some competing products can but I would have to bet that some aspects of the data, particularly saved analyses, table variables and formulas would not come across. JMP Scripting Language (JSL) is incredibly powerful. With it you are actually working with JMP's building blocks in terms of analytics and in terms of how reports and dialogs are put together. I personally think that every JMP user should have some active expertise with JSl but building integrated analytical systems will have to be left to those who have the time and talent to focus on it daily. JMP forces you to change the way you approach analysis and that can be a difficult transition for some but it leads to some powerful capabilities once you make it through. Most analytic tools are focused on the analytic techniques and terms and use those names in their menus. JMP on the other hand, focuses on the data and the questions you’re asking: What is my Y and what’s my X? What’s the relationship between them? This way the emphasis is on the problem at hand, not deciding on a technique for analysis.,10,Excel,Minitab,statistica,10,6,10,10,10,10
Windows, Mac
JMP Statistical Discovery Software from SAS
56 Ratings
Score 7.5 out of 101
TRScore

JMP Statistical Discovery Software from SAS Reviews

JMP Statistical Discovery Software from SAS
56 Ratings
Score 7.5 out of 101
Show Filters 
Hide Filters 
Filter 56 vetted JMP Statistical Discovery Software from SAS reviews and ratings
Clear all filters
Overall Rating
Reviewer's Company Size
Last Updated
By Topic
Industry
Department
Experience
Job Type
Role
Reviews (1-19 of 19)
  Vendors can't alter or remove reviews. Here's why.
Gabriel Chiararia profile photo
May 21, 2018

JMP Statistical Discovery Software from SAS Review: "JMP: Excellent tool for regression!"

Score 9 out of 10
Vetted Review
Verified User
Review Source
I worked in student-led marketing consulting firm and I led the Analytics and Insights team, and we used JMP for data analysis. There were around 50 people in the organization, but only the ones in the Analytics and Insights department used JMP. We received requests from the account managers and we then ran some analysis for them depending on the project need.
  • 1 - Coding is not required: I've used other tools (Python, Mathlab, and R) and coding is required for all of them. With JMP, you just load the data, see it in a table and start working right away. I see it as a statistical version of MS Excel.
  • 2 - Powerful and easy regression: I love how easy, intuitive and powerful JMP is for running regression models. It was great for trying to fit the best regression models.
  • 3 - Smooth OS integration: I use in both macOS and Windows and both run just fine!
  • 1 - Not the most user friendly: In comparison to other tools (Azure ML, for example), JMP is not the most user friendly.
  • 2 - Features are not super comprehensive: Don't get me wrong, JMP has a lot of features! But when you compare against R, which is open source - so there are a lot of people adding new libraries frequently, JMP might lack some things you might want (especially the most recent ones).
  • 3 - Cost: In comparison to others (Azure ML is super cheap, R and Python are free), JMP can seem expensive.
Well suited:
- If you are using a lot of data tables, and would like the best tool to run regression;

Less appropriate:
- If you want to run some of the newest machine learning models;
- If you are on a budget and still want to get the best of your datasets.
Read Gabriel Chiararia's full review
No photo available
February 12, 2018

JMP Statistical Discovery Software from SAS Review: "JMP away from cumbersome Excel workbooks"

Score 8 out of 10
Vetted Review
Verified User
Review Source
JMP is being used to track a wide array of real-time production data at our biotech company. It is currently used by one department (technical operations) in order to quantify failures and track efficiencies with regard to our production processes. These include sales rates/times, creating survival curves, organizing multivariable processes, addressing multicollinearity, technician efficiencies and other aspects of our production. It mainly serves as a conduit to create quick snapshots of overall production efficiency that have replaced cumbersome Excel spreadsheets, as JMP can process basic graphs easier and faster than Excel.
  • JMP has "drag and drop" graph building functions that can filter variables and make adjustments instantaneously.
  • JMP has its own scripting language that can link to an Excel spreadsheet and instantaneously create report-outs
  • There is a low overall learning curve, especially if you are familiar with other statistical programs or more advanced Excel functions
  • Huge support network and prompt response time from SAS. Also, many third party JMP experts that can help you create report outs or write more complicated scripts.
  • It would be nice if JMP had multiple sheets in order to create graphs from pivot tables.
  • The overall aesthetic is pretty weak, compared to Excel, especially if you are trying to make a more polished presentation
  • Changing variables in the graph builder can cause you to lose your formatting, which can be annoying and time-consuming if you make a mistake
JMP is great for crunching huge datasets, especially if you are overloading your Excel workbook. You can have JMP communicate directly with Excel or FileMaker because it has its own scripting language, so you can basically have report at the click of a button. If you are into formatting and pretty graphs, JMP does not include a ton of aesthetic functionality. The drag and drop graph building function allows you to filter out variables easily and change the look of your graph, but can be confusing at times even when you are trying to create simple graphs. Overall it is a great tool to crunch a lot of data without lag.
Read this authenticated review
Roberto Jimenez profile photo
April 18, 2017

JMP Statistical Discovery Software from SAS Review: "JMP for preliminary data analysis"

Score 9 out of 10
Vetted Review
Verified User
Review Source
I use JMP as a starting point for data analysis and exploration. It is not being used across the organization, rather on a case-by-case basis.
  • Save scripts directly to the data table so that the user can recreate the steps to create reports, charts, when the underlying data changes.
  • Multiple options for graphing and plotting and flexible configuration options.
  • Detailed instructions and explanations in the help document.
  • Simple quick filters at the top of each column of the data table.
  • Update tutorial materials to match the layout of the newest version (13.1), or provide a quick reference guide showing what changed between the previous version and the current one.
  • Window arrangement could be improved and automated. When multiple windows are open (tables, charts, reports, journals) it could get confusing to get to the right place quickly.
Well suited for preliminary data analysis, identifying trends and distribution of the data, finding and excluding outliers as appropriate. Since JMP is well equipped for exploratory analysis, it is not the best choice when the level of interaction with the data must be limited.
Read Roberto Jimenez's full review
Si Wong profile photo
February 20, 2017

JMP Statistical Discovery Software from SAS Review: "JMP is awesome!"

Score 10 out of 10
Vetted Review
Verified User
Review Source
It is just being just used in my department. We use it for all of our quantitative analysis from segmentations to product development to figuring out if a marketing solution is being optimized. Overall, we use it to address anything for our clients and anything internal as well.
  • Quant.
  • DOE
  • Regression
  • All the cool stuff is in pro and that costs significantly more especially with JMP 13.
Better for smaller datasets that aren't querying millions of rows of data.
Read Si Wong's full review
Wayne Levin profile photo
December 23, 2015

JMP Statistical Discovery Software from SAS Review: "Upgrade your problem-solving and research capabilities with JMP"

Score 10 out of 10
Vetted Review
Verified User
Review Source
We assist our clients in accelerating research, both R&D, routine improvement initiatives as well as root cause analysis. JMP is central to this effort in two ways. First, we help them exploit the tool and secondly, we build and integrate JMP with databases and server-based software to create analytical systems that imbed analytics into standard operating procedures.
  • JMP is designed from the ground-up to be a tool for analysts who do not have PhDs in Statistics without in anyway "dumbing down" the level of statistical analysis applied. In fact, JMP operationalizes the most advanced statistical methods. JMP's design is centred on the JMP data table and dialog boxes. It is data focused not jargon-focussed. So, unlike other software where you must choose the correct statistical method (eg. contingency, ANOVA, linear regression, etc.), with JMP you simply assign the columns in a dialog into roles in the analysis and it chooses the correct statistical method. It's a small thing but it reflects the thinking of the developers: analysts know their data and should only have to think about their data. Analyses should flow from there.
  • JMP makes most things interactive and visual. This makes analyses dynamic and engaging and obviates the complete dependence on understanding p-values and other statistical concepts(though they are all there) that are often found to be foreign or intimidating.
  • One of the best examples of this is JMP's profiler. Rather than looking at static figures in a spreadsheet, or a series of formulas, JMP profiles the formulas interactively. You can monitor the effect of changing factors (Xs) and see how they interact with other factors and the responses. You can also specify desirability (maximize, maximize, match-target) and their relative importances to find factor settings that are optimal. I have spent many lengthy meetings working with the profiler to review design and process options with never a dull moment.
  • The design of experiments (DOE) platform is simply outstanding and, in fact, the principal developers of it have won several awards. Over the last 15 years, using methods broadly known as an "exchange algorithm," JMP can create designs that are far more flexible than conventional designs. This means, for example, that you can create a design with just the interactions that are of interest; you can selectively choose those interactions that are not of interest and drop collecting their associated combinations.
  • Classical designs are rigid. For example, a Box-Benhken or other response surface design can have only continuous factors. What if you want to investigate these continuous factors along with other categorical factors such as different categorical variables such as materials or different furnace designs and look at the interaction among all factors? This common scenario cannot be handled with conventional designs but are easily accommodated with JMP's Custom DOE platform.
  • The whole point of DOE is to be able to look at multiple effects comprehensively but determine each one's influence in near or complete isolation. The custom design platform, because it produces uniques designs, provides the means to evaluate just how isolated the effects are. This can be done before collecting data because this important property of the DOE is a function of the design, not the data. By evaluating these graphical reports of the quality of the design, the analyst can make adjustments, adding or reducing runs, to optimize cost, effort and expected learnings.
  • Over the last number of releases of JMP, which appear about every 18 months now, they have skipped the dialog boxes to direct, drag-and-drop analyses for building graphs and tables as well as Statistical Process Control Charts. Interactivity such as this allows analysts to "be in the moment." As with all aspects of JMP, they are thinking of their subject matter without the cumbersomeness associated with having to think about statistical methods. It's rather like a CEO thinking about growing the business without having to think about every nuance and intricacy of accounting. The statistical thinking is burned into the design of JMP.
  • Without data analysis is not possible. Getting data into a situation where it can be analyzed can be a major hassle. JMP can pull data from a variety of sources including Excel spreadsheets, CSV, direct data feeds and databases via ODBC. Once the data is in JMP it has all the expected data manipulation capabilities to form it for analysis.
  • Back in 2000 JMP added a scripting language (JMP Scripting Language or JSL for short) to JMP. With JSL you can automate routine analyses without any coding, you can add specific analyses that JMP does not do out of the box and you can create entire analytical systems and workflows. We have done all three. For example, one consumer products company we are working with now has a need for a variant of a popular non-parametric analysis that they have employed for years. This method will be found in one of the menus and appear as if it were part of JMP to begin with. As for large systems, we have written some that are tens of thousands of lines that take the form of virtual labs and process control systems among others.
  • JSL applications can be bundled and distributed as JMP Add-ins which make it really easy for users to add to their JMP installation. All they need to do is double-click on the add-in file and it's installed. Pharmaceutical companies and others who are regulated or simply want to control the JMP environment can lock-down JMP's installation and prevent users from adding or changing functionality. Here, add-ins can be distributed from a central location that is authorized and protected to users world-wide.
  • JMP's technical support is second to none. They take questions by phone and email. I usually send email knowing that I'll get an informed response within 24 hours and if they cannot resolve a problem they proactively keep you informed about what is being done to resolve the issue or answer your question.
  • JMP does a lot and can be intimidating for new users. New users and their managers need to understand that it’s unlikely that anyone will use all of JMP's capabilities in their work. Some uses are very limited. But it’s not important how much of the whole JMP product and capabilities you use but rather what use of the product contributes.
  • We have seen time and again where organizations up their game analytically because they are using JMP. Though JMP makes these methods accessible by way of visualization and interactivity, there is still a learning curve involved. For example, JMP does a great job with time series analyses allowing manufacturers to find cyclical patterns that lead to yield hits. Using it in JMP is easy but engineers need to understand the concepts behind it to exploit it.
  • JMP data tables are proprietary and I'm not sure that any other software can open native JMP files. Perhaps some competing products can but I would have to bet that some aspects of the data, particularly saved analyses, table variables and formulas would not come across.
  • JMP Scripting Language (JSL) is incredibly powerful. With it you are actually working with JMP's building blocks in terms of analytics and in terms of how reports and dialogs are put together. I personally think that every JMP user should have some active expertise with JSl but building integrated analytical systems will have to be left to those who have the time and talent to focus on it daily.
  • JMP forces you to change the way you approach analysis and that can be a difficult transition for some but it leads to some powerful capabilities once you make it through. Most analytic tools are focused on the analytic techniques and terms and use those names in their menus. JMP on the other hand, focuses on the data and the questions you’re asking: What is my Y and what’s my X? What’s the relationship between them? This way the emphasis is on the problem at hand, not deciding on a technique for analysis.
Many organizations have seen their analytical capabilities, and the results from them, plateau. Of these, we've observed, that most of them didn't appreciate that they could do (even) better. These companies should definitely consider JMP. Any company that is research-based can benefit from accelerating their research, learning more in less time, effort and cost, with JMP's tools. Basically, any organization that is hungry enough for improvement to seek out better ways is suitable for JMP. Those who are happy with their current performance are not likely to consider the changes, though they were not major impediments by our clients, required.
Read Wayne Levin's full review
Trevor Plaisted profile photo
September 30, 2015

JMP Statistical Discovery Software from SAS Review: "JMP for Process Engineers in Semiconductor Manufaturing"

Score 9 out of 10
Vetted Review
Verified User
Review Source
JMP is a software suite utilized by a handful of engineers in our Semiconductor manufacturing facility. It competes directly with another alternative that many have converted to but I have found JMP to be much more intuitive and friendlier to manipulate and analyze data that I specifically promoted and was granted a user license. We have scores of data on our products that we manufacture, the process is extremely complex and JMP helps to build insight quicker into the problems we face on a daily basis.
  • Semiconductor Manufacturing Process data is not always statistically compatible, meaning classical statistical approaches are insufficient to recognize anomalies and discrepant product that could deteriorate customer satisfaction. Process data often requires an experienced eye to observe the historical trends graphically, and I've come to rely heavily on JMP's ability to simplify graphing while also enabling continued manipulation and analysis of the data through the graphical interface. I can quickly highlight discrepant material, modify the display characteristics, redisplay, update, republish....and the cycle continues until I have a clean set of data that is intuitive and insightful.
  • My JMP use is "ALWAYS" closely tied with MS Excel because raw data manipulation within JMP is rather cumbersome and clunky. The freedom and flexibility that Excel offers allows me to organize the data easier then when I'm ready I export the data set to JMP for analysis. If I didn't have Excel to assist in building the data set, I don't know how long it would take me to become proficient in JMP. Were JMP to adopt the flexible features that Excel has for housing data and manipulating arrays, then I wouldn't even need to use Excel...the distinct advantage in my mind of JMP over Excel is its analytic and graphic features but JMP's limitation is its rigid requirements for data structure and the high hurdle for common Excel users to work with data in the bounds JMP requires.
  • I do many repetitive tasks in JMP, I wish the ability to build a script from my operations was easier and more intuitive. Many users are either unaware of the scripting capabilities or afraid to begin learning about the features because the learning curve is too steep. Some efforts to cater the power of scripting to the less astute audience will build more loyal followers and further widen the customer base.
  • As I reflected over the use of JMP from the past several years, I realized that JMP is usually a tool used in tandem with another. The more independent JMP can become to perform more tasks the less I rely on secondary software applications and ultimately the greater cost advantage for the organization because it could reduce licensing fees for software tools that support its operations. Typically I must query a database for the data, manipulate it with MS Excel, then export the queried information into JMP for analysis and display...this is 3 sets of software that I must navigate before I can actually make a decision on what the data is telling me. If JMP could query a database better, allow easier data manipulation then an organization would only need to purchase the JMP license as a complete solution to its organizational needs.
In a specific organization, when data/information is queried from a database, is the data organized in a structure that is compatible with the formats required by JMP?
Read Trevor Plaisted's full review
Ruth Wirawan profile photo
June 10, 2015

JMP Statistical Discovery Software from SAS Review: "One-stop-shop Stat Analysis Tool - JMP"

Score 10 out of 10
Vetted Review
Verified User
Review Source
JMP modules are used as an overall statistical package for data analyses.
  • Easy to use (intuitive for engineers)
  • Credible and up-to-date statistical methods / techniques implemented in the modules
  • One-stop-shop for all my statistical analysis needs
  • Reliability module: CDF plot with interval failure points shown
  • Reliability module: Recommendation of best models to use
  • Table's ease of use to allow simple spreadsheet operations. Example: average values of every 3 cells
Reliability module: Parametric survival analysis platform is powerful, however, the translation to common physics of failure models can be unclear. Proper documentation and live pop-up explanations will be very helpful. Often times, I have to rerun the same data sets in Reliasoft ALTA Pro to confirm my interpretation of the parameters is correct.
Read Ruth Wirawan's full review
Michael Carcasi profile photo
April 29, 2015

JMP Statistical Discovery Software from SAS Review: "JMP for semiconductor process and HW analysis"

Score 10 out of 10
Vetted Review
Verified User
Review Source
JMP is used by many departments within the organization. At the application engineer level, it is mainly used for efficient design of experiments and experimental data analysis and visualization. It is also used at all levels of engineering and R&D as a data visualization, statistical analysis, MVA analysis and model fitting tool.
  • JMP's fitting of complex multivariable models by use of effect screening and effect leverage techniques can often allow complex convolved responses to be understood
  • JMP's design of experiments (DOE) applications allows efficient experimental setup and analysis
  • JMP's ease of use and suite of visualization capabilities
  • While JMP provides scripting for automation, I have found the scripting language to be non-obvious at times and the documentation historically for scripting to be inadequate. For these situations, I often turn to Matlab instead.
  • Since all levels of engineers use it at some level I wish the program would, at times, better protect the user from themselves especially when it comes to determining statisical differences. While program gives all revelant metrics to user so that an educated user can know the qulity of their analysis, the attempt of program to simplify all those metrics into simple visualization can sometime lead the uneducate user into inaccurate conclusions.
  • With fitting model to complex data, you will often go through many variants of model effect assumptions to attempt to fit data. It would be beneficial if there was better way to coalesce these model fit attempts into a simple summary to more quickly drive to the optimum model.
JMP is a powerful data visualization tool. It likewise is a powerful DOE tool. For these applications, I think it is appropriate for all. As you dive deeper into JMP capabilities, I think it becomes more appropriate for user to have at least some formal training in statistics.
Read Michael Carcasi's full review
Mark Davis profile photo
March 13, 2015

JMP Statistical Discovery Software from SAS Review: "Research and design use of JMP"

Score 7 out of 10
Vetted Review
Verified User
Review Source
JMP is used in Research and develepment department and the full engineering staff. The software addresses data manuipulation and analysis for experimental design and process improvements.
  • JMP has a good menu driven 'wizard like' method for data setup and collection. Base analysis is easy to obtain and review.
  • Large data sets from external sources can be loaded into JMP for tracking and review. Good method for an analysis engine coupled to database management
  • Canned routines are easier to use and less intimidating than using the full SAS packages and modules.
  • Design of experiment software is sometimes difficult to manipulated and modify for screening or surface state analysis.
  • Canned graphics are a good starting point but adaption for presentations or memos is not the best format. 3D graphics can be powerful but they are very difficult to navigate
  • Higher orders of statistical analysis and regression is desired.
  • I would love to see an integration or handshake from JMP to the SAS platform
Data size and complexity is the driver for choice of an analysis application. For example, a thousand line by 150 column data set is great for excel or a spreadsheet. If the data is in the 25,000 line range and only a 100 columns then use JMP. For larger and more complex relational databases my recommendation is for SAS.
Read Mark Davis's full review
Eric Burton profile photo
March 26, 2014

JMP Statistical Discovery Software from SAS: "JMP Review: Good for Visual Charts/Graphs, Data Mining, and Experiment Design (DOE)"

Score 8 out of 10
Vetted Review
Verified User
Review Source
In our company, JMP is used primarily for data analysis by the engineering support group. We use JMP's analysis capability to leverage data to make better decisions, AND to help show that data to tell a story to others in the organization.
  • JMP is GREAT with graphical representations of data. It has a very graphical interface that allows for intuitive interaction. For example, if I graph a distribution of data, and I have some outliers, circling that area of the graph will hilight the rows of data on the corresponding table.
  • JMP's graph builder is a big hit. If I have a complex data set, I may know that I want to display it visually, but might not be sure about the best way to do that. The graph building feature is a fantastic way to "poke and prod" at the graph and get it to look just right. The map support is great. You want to show sales volumes by state in a map? JMP does it in a snap. The inner geek in you will get a kick out of all the ways you can show your data!
  • JMP is tuned to letting your numbers tell a story. If you have data, and a clear decision, but have trouble showing that to others, JMP can be extremely valuable. You can export your analyses as PDF files for easy viewing, and some modeling can even be saved as interactive HTML files, so that others can explore the data on their own.
  • One thing that you get with JMP that is hard to quantify, is access to a tremendous community of problem solvers, statisticians, and people using data to make better decisions. Most communities have a JMP Users Group (JUG) that provides a forum to learn from peers how to apply JMP's capabilities in new ways. Also, JMP will occasionally provide speakers and trainers as part of their discovery series, where you can hear presentations from some really high caliber people who are on the cutting edge of experiment design, data representation, and data mining. (All of these things I've just mentioned are provided at no additional cost.) Elsewhere in my review I mentioned that JMP's price structure, (high initial seat prices with prorated prices as you add users) might be prohibitive. I HAVE to think that their pricing model represents their commitment to support their software and get you up and using it.
  • In general JMP is much better fit for a general "data mining" type application. If you want a specific statistics based toolbox, (meaning you just want to run some predetermined test, like testing for a different proportion) then JMP works, but is not the best. JMP is much more suited to taking a data set and starting from "square 1" and exploring it through a range of analytics.
  • The CPK (process capability) module output is shockingly poor in JMP. This sticks out because, while as a rule everything in JMP is very visual and presentable, the CPK graph is a single-line-on-grey-background drawing. It is not intuitive, and really doesn't tell the story. (This is in contrast with a capability graph in Minitab, which is intuitive and tells a story right off.) This is also the case with the "guage study" output, used for mulivary analysis in a Six Sigma project. It is not intuitive and you need to do a lot of tweaking to make the graph tell you the story right off. I have given this feedback to JMP, and it is possible that it will be addressed in future versions.
  • I've never heard of JMP allowing floating licenses in a company. This will ALWAYS be a huge sticking point for small to middle size companies, that don't have teams people dedicated to analytics all day. If every person that would do problem solving needs his/her own seat, the cost can be prohibitive. (It gets cheaper by the seat as you add licenses, but for a small company that might get no more than 5 users, it is still a hard sell.)
Are you interested in high level data mining? Does your team participate in a lot of Statistically Designed Experiments? (DOE) JMP does very well here. Are you performing response modeling and creating prediction equations? JMP does this very well. Are you focused on good looking, graphical representations of your data? JMP SHINES in the presentation arena. Do you have some "stats geeks" on staff that know the numbers, but want a fast way to share reporting with others? JMP is a good avenue for this.

However, are you looking for a "quick and dirty" stats toolbox for SPC/control charting, for CPK analyses, t-tests or proportion testing? Are you looking for a "vending machine" interaction where you know exactly what you want and you just want one output? If the above describes you more closely, I'd suggest something closer to Minitab.
Read Eric Burton's full review
Michael Morris profile photo
March 29, 2014

JMP Statistical Discovery Software from SAS Review: "JMP, visually appealing to users"

Score 5 out of 10
Vetted Review
Verified User
Review Source
I use JMP in my current position very sparingly. The main usage for JMP is plotting longitude and latitude coordinates and using them to display bubble charts of sales by state. During my education however we utilized JMP in more extensive roles including clustering, regression, neural networks, and other more advanced analysis techniques. In my current position I am the only user of JMP. I have also slightly used JMP for survival analysis, but switched to R during my analysis.
  • Bubble charts and plotting longitude and latitude coordinates.
  • I like the graphics it is capable of producing more than other analysis software.
  • The point and click environment can be very useful and helpful for some analysts.
  • With JMP being a SAS product, I would like to see an ability to do programming in JMP. While the point and click environment can be nice for some items, being able to code analysis can be much more efficient and timely for some users.
  • When outputting bubble maps that have been displayed on a geographical map the labels do not lineup on the outputted graphic.
  • The output for certain analysis such as regression and neural networks can be difficult to understand at times. The layout and design for displaying model statistics makes finding certain key items difficult.
JMP, like other point and click analysis environments, are very useful to users with little or no programming experience. A typical analyst who has experience in data analysis would much prefer to code their analysis programs than using a point and click environment. However for users without a strong analysis background who are using JMP for simple purposes, the point and click environment can be very user friendly for them. But as I mentioned, the inability to code can deter more advanced users.
Read Michael Morris's full review
Camilo Silva profile photo
March 29, 2014

JMP Statistical Discovery Software from SAS: "A beginner's review to JMP"

Score 9 out of 10
Vetted Review
Verified User
Review Source
I used JMP during my Graduate internship at Intel Corp. I worked in the Technology development Quality & Reliability Department under Manufacturing. JMP was and I'm sure it is still used extensively everyday in order to analyze high throughput data of reliability tests and be able to compute any type of statistic needed. The main business problem addressed is in being able to support the file access of huge csv data files of 5GB of data -- this is a challenge since no good product can do this except JMP only if the VM or laptop has enough RAM resources allocated. Thanks to JMP, daily tasks of statistical analysis were able to be performed. In addition, the command line utilities of JMP were used to customize outputs during batch script processes.
  • Command line support: a great way to customize reports and analyze data
  • Excellent and Fast statistical analysis: the algorithms used to compute stats are extremely fast and accurate.
  • High-throughput file support: JMP has the capability and support to be able to analyze and compute statistics of files with huge amounts of data.
  • Graphs: the graphs need to be more flexible for reporting.
  • The saving of the graph images should have better support to export in different image extensions -- vector images would be great!
  • The JMP tutorials are really helpful but there should be a greater library of video tutorials. Maybe the JMP community could contribute here?
WELL SUITED
High throughput data analysis that need all kinds of statistics and graphs

NOT WELL SUITED
Business reporting and graph creation and customization (like Excel)
Read Camilo Silva's full review
Jaimin Patel profile photo
March 28, 2014

JMP Statistical Discovery Software from SAS Review: "JMP for Gene Expression Analysis"

Score 9 out of 10
Vetted Review
Verified User
Review Source
It has been extensively used at NIH. Our lab is using it for Micro-array Analysis and Next Generation Sequence Analysis. I used it to compare expression of various genes in micro array analysis of cancer cells. I used it for GO term analysis, IPA, gene set scoring for differential expression. Even I used JMP genomics to develop Pathway visualization plugin using Java - Cytoscape, JMP Scripting language (JSL), MySQL and R. It's very powerful and accurate statistical tool specially designed for Life Science.
  • Differential expression of genes.
  • Development of new plugins.
  • Micro array analysis
  • Next Generation sequencing analysis
  • Improvement in statistical calculations speed
Requires more plugins for integration with Java Applications.
Read Jaimin Patel's full review
Adam Smith profile photo
March 28, 2014

JMP Statistical Discovery Software from SAS Review: "JMP - An Excellent Tool for Visual Data Discovery and Analysis"

Score 10 out of 10
Vetted Review
Verified User
Review Source
JMP is used by the Marketing Department to analyze customer surveys, segment and profile customers, as well as general analysis. It is a very good data discovery tool that allows you to simply and visually understand the data you have and report it out to others. JMP Pro also has many predictive analytics tools such as neural networks.
  • Graph Builder is one of the best features of JMP. It allows you to create graphs, on the fly, in a drag and drop environment. It allows you to quickly get a feel for your data in a format that is easily presentable to others.
  • JMP is great for a wide varieties of statistical ability. For those with no or very little statistical background there are many simple commands and visual options that make it easy to understand your data. For those with more advanced abilities you can code in JMP's Scripting Language (JSL) to get JMP to do exactly what you want, or to automate reporting.
  • The support team for JMP is wonderful. There is a large online library of webinars, documents, books, etc that will help you get up and running in no time. If you need a little extra help in particular areas, SAS Education offers JMP specific classes.
  • JMP Pro has wonderful suite of predictive analytics tools.
  • I can't think of any areas for improvement for JMP.
JMP is well-suited to a variety of applications. It is often used by engineers and analysts who may not be experts in statistics, but know enough to successfully use JMP to produce great analysis. JMP is a product created by SAS, which is a great company to work with. If you get the opportunity to attend the JMP Discovery Summit (JMP's annual conference in September) it is a great opportunity to learn more about the product both from the developers as well as from fellow users.
Read Adam Smith's full review
No photo available
July 21, 2015

JMP Statistical Discovery Software from SAS Review: "JMP: The Most Powerful Statistical Tool On the Market"

Score 9 out of 10
Vetted Review
Verified User
Review Source
We use JMP as a statistical tool to manage data. It is used across our department and multiple other departments across the university. JMP provides us with a powerful tool to conduct any number of meaningful statistical analyses on any kind of data. We use JMP to provide powerful, interactive visuals for presentation and publishing purposes.
  • JMP can handle a seemingly infinite amount of data.
  • The statistical tests included in JMP are all-inclusive.
  • The learning curve can be very, very steep.
It is perfectly suited for statistical analyses, but I would not recommend JMP for users who do not have a statistical background. As previously stated, the learning curve is exceptionally steep, and I think that it would prove to be too steep for those without statistical background/knowledge.
Read this authenticated review
No photo available
November 13, 2015

JMP Statistical Discovery Software from SAS Review: "JMP from engineering perspective"

Score 9 out of 10
Vetted Review
Verified User
Review Source
JMP is being used daily as one of the key tools from the engineering tool box for my engineering department at a semiconductor manufacturing company in east coast of US. It is being used by my department, and it has caught attention from other departments as well. I will be glad to see it being used across the whole organization. I highly recommended the analyze and graph functional modules which help me to address volume production issues using multiple variant correlation and visualization of large data set.
  • JMP is a column based data analysis tool, and its graph function is interactive, which help me to pin point the parts which had issues, and find the root cause quicker.
  • JMP can handle seas of data, with no limitation on number of rows or columns. This is important for me since large data sets are key for me to look at trending, and view the data as a whole with connection to each other.
  • I liked the SAS JMP on-line webcast programs, which help me and my team to develop the skills that are needed and answer questions that seems to be small but can make a difference in data analysis efficiency and quality.
  • It would helpful if JMP can provide more case-based demo, besides sample Data. Because based on the statistical nature of the data, different ways of analysis can be applied, to generate meaningful results and conclusion.
  • For example, Cpk calculation, for two-sided Spec vs one-sided Spec.
  • It turns out, some Cpk was calculated by JMP can have negative values, which do not make sense,f or process capability analysis.
JMP is well suited for statistical analysis. However, when underlying physics or science is needed to better understand or simulate the observation or to provide prediction by modeling, JMP seems to lack the flexibility for end-user to provide boundary conditions or pre-defined rules to rule out impossibles in the predictive modeling.
Read this authenticated review
No photo available
November 11, 2015

JMP Statistical Discovery Software from SAS Review: "Jmp your way to success in analyzing your data"

Score 8 out of 10
Vetted Review
Verified User
Review Source
JMP Pro is being used across the whole organization. It is mostly used to solve engineering problems. It is used as a statistical and analytical tool to troubleshoot problems related to manufacturing.
  • Very powerful visual analytical tool
  • Easy capability for creating reports in HTML
  • Integration with R, Matlab
  • Statistical modeling capability
  • Very good documentation on well established solutions
  • Scripting capability is very poor, they have introduced application builder to do GUI based application but still needs more flexibility in terms of scripting as its lot tedious to do simple things
  • Need improved documentation on features that are newer
  • Its not easy to develop certain analysis and takes a while to screen out data and build it
  • Need some more Data mining and Machine learning algorithms
Pros:
Do you need Visual Analytics?
Is your data noisy?
Are you new to statistics and analysis? Good Documentation
Do you need for DOE? Easy for simple DOE and modeling cases
Do you need to interface with other softwares? Capability to interface with other programs like R, Matlab, Excel etc...

Cons:
Do you need to automate repetitive tasks? Scripting is not friendly and needs improvement
Do you need to build an application? Application Builder is a good addition but at infancy phase
Do you need for data mining? Data Mining algorithms not yet sophisticated
Read this authenticated review
No photo available
April 07, 2014

JMP Statistical Discovery Software from SAS Review: "Why JMP is a ‘go to’ statistical package"

Score 10 out of 10
Vetted Review
Verified User
Review Source
JMP is used as main statistical software to support Quality by Design implementation within generic R&D (DOE, specifications assessment, stability trending) and as main statistical tool to support Operations with product robustness initiative (SPC, Process Capability etc). It helps to optimize processes and formulations, find robust operating conditions and assess product robustness, explore interactively 'what if' scenarios..
  • Design of Experiments: the Custom Design platform is a great asset for R&D; it fits the design to practical problem and not the opposite.
  • Stability and Degradation: Platform was a great tool to assess products shelf-life and specifications within few clicks. The platform is customized to suit pharma industry based on ICH guidelines.
  • Monte-Carlo simulation is a great interactive platform to assess product robustness based on developed model and explore different scenarios to find the sweet spot and global optimum that is also cost effective.
  • Easier manipulation between multiple tables
  • Once in a while the software would shut-down without letting saving the file
  • More pharma customised features
JMP Licenses procedure could be streamlined.
Read this authenticated review
No photo available
March 29, 2014

JMP Statistical Discovery Software from SAS Review: "JMP- helpful if you have a particular set of skills (or needs)"

Score 6 out of 10
Vetted Review
Verified User
Review Source
We use JMP to create large amounts of graphs in a very limited amount of time. We also use it to create more complicated graphs that are difficult or impossible to do in excel (3D graphs). We are the only department that uses it.
We often use DDE in SAS and VBA in excel to automate the creation of graphs, and occasionally choose that option over JMP because people are more familiar with it. An advantage to JMP is that the graphs don't like excel graphs.
It's also useful to have open during a presentation, because if someone wants to see a relationship between variables, JMP can create a graph of those variables quickly.
  • Graph automation (has a script system similar to VBA)
  • Interfaces very well with SAS
  • User friendly
  • Complex graphs
  • Excellent customer service
  • Can create and change graphs quickly
  • Expensive
  • Difficult to manipulate data in JMP; relies heavily on SAS
  • Can be difficult to understand what data is required in certain graphs
I think it is less appropriate for professional looking printed reports. If you are looking for a tool to give to non-programmers so they can look at relationships themselves without bothering you, or are looking to automate graphs, this would work very well for you. It would also be useful if you wanted to make 3D graphs that can be embedded, because they can be spun with the cursor. Of course, you cannot do this in a printed report.
Read this authenticated review

Feature Scorecard Summary

Pixel Perfect reports (1)
10
Customizable dashboards (4)
6.8
Drill-down analysis (5)
8.2
Formatting capabilities (5)
7.1
Integration with R or other statistical packages (4)
8.8
Report sharing and collaboration (5)
7.1
Publish to Web (2)
10.0
Publish to PDF (4)
8.6
Report Versioning (1)
7
Report Delivery Scheduling (1)
10
Pre-built visualization formats (heatmaps, scatter plots etc.) (7)
8.2
Location Analytics / Geographic Visualization (5)
9.2
Predictive Analytics (5)
9.2

About JMP Statistical Discovery Software from SAS

JMP®

JMP® is the SAS® software designed for dynamic data visualization and analytics on the desktop. Interactive, comprehensive and highly visual, JMP® includes comprehensive capabilities for data access and processing, statistical analysis, design of experiments, multivariate analysis, quality and reliability analysis, scripting, graphing and charting, and more. According to the vendor, JMP® enables data interaction and the exploration of relationships to spot hidden trends, dig into areas of interest and move in new directions that hadn’t yet been considered.

JMP® Pro

JMP® Pro is the advanced analytics version of JMP® statistical discovery software from SAS®. JMP® Pro provides superior visual data access and manipulation, interactive, comprehensive analyses and extensibility (according to the vendor, these are the hallmarks of JMP), plus a many additional techniques. With JMP® Pro, users get the power of predictive modeling with cross-validation, advanced consumer research and reliability analysis, statistical modeling and bootstrapping in desktop-based environment. JMP® Pro is designed for use cases where large data volumes are present, or data is messy, includes outliers or missing data and users want to employ data mining methods or build predictive models that generalize well.

JMP Statistical Discovery Software from SAS Features

Data Discovery and Visualization Features
Has featurePre-built visualization formats (heatmaps, scatter plots etc.)
Has featureLocation Analytics / Geographic Visualization
Has featurePredictive Analytics
Has featureSupport for Machine Learning models
Has featurePattern Recognition and Data Mining
Has featureIntegration with R or other statistical packages
BI Standard Reporting Features
Has featureCustomizable dashboards
Does not have featureReport Formatting Templates
Does not have featurePixel Perfect reports
Ad-hoc Reporting Features
Has featureDrill-down analysis
Has featureFormatting capabilities
Has featurePredictive modeling
Has featureIntegration with R or other statistical packages
Has featureReport sharing and collaboration
Report Output and Scheduling Features
Has featurePublish to Web
Has featurePublish to PDF
Has featureOutput Raw Supporting Data
Does not have featureReport Versioning
Does not have featureReport Delivery Scheduling
Does not have featureDelivery to Remote Servers
Additional Features
Has featureScripting Language
Has featureDesign of Experiments
Has featureText Exploration and Analysis
Has featureReliability Analysis
Has featureData Wrangling and Cleanup
Has featureData Access
Has featureConsumer Research and Survey Analysis
Has featureQuality and Process Engineering

JMP Statistical Discovery Software from SAS Screenshots

JMP Statistical Discovery Software from SAS Integrations

MATLAB, R, SAS

JMP Statistical Discovery Software from SAS Competitors

IBM SPSS, Reliasoft, Minitab

Pricing

Has featureFree Trial Available?Yes
Does not have featureFree or Freemium Version Available?No
Does not have featurePremium Consulting/Integration Services Available?No
Entry-level set up fee?No

JMP Statistical Discovery Software from SAS Support Options

 Free VersionPaid Version
Phone
Email
Forum/Community
FAQ/Knowledgebase
Social Media
Video Tutorials / Webinar

JMP Statistical Discovery Software from SAS Technical Details

Deployment Types:On-premise
Operating Systems: Windows, Mac
Mobile Application:Apple iOS