Google Analytics is perhaps the best-known web analytics product and, as a free product, it has massive adoption. Although it lacks some enterprise-level features compared to its competitors in the space, the launch of the paid Google Analytics Premium edition seems likely to close the gap.
$0
per month
Optimizely Feature Experimentation
Score 8.2 out of 10
N/A
Optimizely Feature Experimentation unites feature flagging, A/B testing, and built-in collaboration—so marketers can release, experiment, and optimize with confidence in one platform.
Google Tag Manager was less flexible for the business and required the Google Analytics tool for analysis and metric tracking. Optimizely allows the building of use cases. Optimizely provides real-time data and metrics that are easier to use. GTM provides tracking …
We have not used any other similar tools, we evaluated both Kameleoon and VWO. With the combination of price, features, and expandability, we moved forward with Optimizely Feature Experimentation.
When Google Optimize goes off we searched for a tool where you can be sure to get a good GA4 implementation and easy to use for IT team and product team.
Optimizely Feature Experimentation seems to have a good balance between pricing and capabilities.
Optimizely FX is the only tool I've used that specifically allows for testing in the back-end. Most front end tools are great for simple tests, but there comes a time when you need to go a level deeper and that's not possible with front-end tools.
Google Analytics is particularly well suited for tracking and analyzing customer behavior on a grocery e-commerce platform. It provides a wealth of information about customer behavior, including what products are most popular, what pages are visited the most, and where customers are coming from. This information can help the platform optimize its website for better customer engagement and conversion rates. However, Google Analytics may not be the best tool for more advanced, granular analysis of customer behavior, such as tracking individual customer journeys or understanding customer motivations. In these cases, it may be more appropriate to use additional tools or solutions that provide deeper insights into customer behavior.
Based on my experience with Optimizely Feature Experimentation, I can highlight several scenarios where it excels and a few where it may be less suitable. Well-suited scenarios: - Multi-Channel product launches - Complex A/B testing and feature flag management - Gradual rollout and risk mitigation Less suited scenarios: - Simple A/B tests (their Web Experimentation product is probably better for that) - Non-technical team usage -
It is easy to use any of our product owners, marketers, developers can set up experiments and roll them out with some developer support. So the key thing there is this front end UI easy to use and maybe this will come later, but the new features such as Opal and the analytics or database centric engine is something we're interested in as well.
Would be nice to able to switch variants between say an MVT to a 50:50 if one of the variants is not performing very well quickly and effectively so can still use the standardised report
Interface can feel very bare bones/not very many graphs or visuals, which other providers have to make it a bit more engaging
Doesn't show easily what each variant that is live looks like, so can be hard to remember what is actually being shown in each test
We will continue to use Google Analytics for several reasons. It is free, which is a huge selling point. It houses all of our ecommerce stores' data, and though it can't account for refunds or fraud orders, gives us and our clients directional, real time information on individual and group store performance.
Google Analytics provides a wealth of data, down to minute levels. That is it's greatest detriment: find the right information when you need it can be a cumbersome task. You are able to create shortcuts, however, so it can mitigate some of this problem. Google is continually refining Analytics, so I do not doubt there will be improvements
Easy to navigate the UI. Once you know how to use it, it is very easy to run experiments. And when the experiment is setup, the SDK code variables are generated and available for developers to use immediately so they can quickly build the experiment code
We all know Google is at top when it comes to availability. We have never faced any such instances where I can suggest otherwise. All you need is a Google account, a device and internet connection to use this super powerful tool for reporting and visualising your site data, traffic, events, etc. that too in real time.
This has been a catalyst for improving our site's traffic handling capabilities. We were able to identify exit% from our sites through it and we used recommendations to handle and implement the same in our sites. We have been increasing the usage of Google Analytics in our sites and never had any performance related issues if we used Analytics
The Google reps respond very quickly. However, sometimes they can overly call you to set up an apportionment. I'm very proficient and sometimes when I talk to reps, they give beginner tutorials and insights that are a waste of time. I wish Google would understand my level of expertise and assign me to a rep (long-term) that doesn't have to walk me through the basics.
love the product and training they provide for businesses of all sizes. The following list of links will help you get started with Google Analytics from setup to understanding what data is being presented by Google Analytics.
I think my biggest take away from the Google Analytics implementation was that there needs to be a clear understanding of what you want to achieve and how you want to achieve it before you start. Originally the analytics were added to track visitors, but as we became more savvy with the product, we began adding more and more functionality, and defining guidelines as we went along. While not detrimental to our success, this lack of an overarching goal resulted in some minor setbacks in implementation and the collection of some messy data that is unusable.
I have not used Adobe Analytics as much, but I know they offer something called customer journey analytics, which we are evaluating now. I have used Semrush, and I find them much better than Google Analytics. I feel a fairly nontechnical person could learn Semrush in about a month. They also offer features like competitive analysis (on content, keywords, traffic, etc.), which is very useful. If you have to choose one among Semrush and Google Analytics, I would say go for Semrush.
When Google Optimize goes off we searched for a tool where you can be sure to get a good GA4 implementation and easy to use for IT team and product team. Optimizely Feature Experimentation seems to have a good balance between pricing and capabilities. If you are searching for an experimentation tool and personalization all in one... then maybe these comparison change and Optimizely turns to expensive. In the same way... if you want a server side solution. For us, it will be a challenge in the following years
Google Analytics is currently handling the reporting and tracking of near about 80 sites in our project. And I am not talking about the sites from different projects. They may have way more accounts than that. Never ever felt a performance issue from Google's end while generating or customising reports or tracking custom events or creating custom dimensions
We have a huge, noteworthy ROI case study of how we did a SaaS onboarding revamp early this year. Our A/B test on a guided setup flow improved activation rates by 20 percent, which translated to over $1.2m in retained ARR.