Likelihood to Recommend Apache Flume is well suited when the use case is log data ingestion and aggregate only, for example for compliance of configuration management. It is not well suited where you need a general-purpose real-time data ingestion pipeline that can receive log data and other forms of data streams (eg IoT, messages).
Read full review Software work execution is on a large scale, it is good to use for new projects or organizational changes, data lineage mapping has always been dubious but this one has had good results. You can store and synchronize data from different departments, the storage process can be manual but it is best automated.
Read full review Pros Multiple sources of data (sources) and destinations (sinks) that allows you to move data form and to any relevant data storage It is very easy to setup and run Very open to personalization, you can create filters, enrichment, new sources and destinations Read full review Apache Hive allows use to write expressive solutions to complex problems thanks to its SQL-like syntax. Relatively easy to set up and start using. Very little ramp-up to start using the actual product, documentation is very thorough, there is an active community, and the code base is constantly being improved. Read full review Cons It is very specific for log data ingestion so it is pretty hard to use for anything else besides log data Data replication is not built in and needs to be added on top of Apache Flume (not a hard job to do though) Read full review Some queries, particularly complex joins, are still quite slow and can take hours Previous jobs and queries are not stored sometimes Switching to Impala can sometimes be time-consuming (i.e. the system hangs, or is slow to respond). Sometimes, directories and tables don't load properly which causes confusion Read full review Likelihood to Renew Since I do not know the second data warehouse solution that integrate with HDFS as well as Hive.
Read full review Usability Hive is a very good big data analysis and ad-hoc query platform, which supports scaling also. The BI processes can be easily integrated with Hadoop via the Hive. It can deal with a much larger data set that traditional RDBMS can not. It is a "must-have" component of the big data domain.
Read full review Support Rating Apache Flume is open-source so support is limited. Never the less, it has great documentation and best practices documents from their end-users so it is not hard to use, setup and configure.
Read full review Apache Hive is a FOSS project and its open source. We need not definitely comment on anything about the support of open source and its developer community. But, it has got tremendous developer support, awesome documentation. I would justify the fact that much support can be gathered from the community backup.
Read full review Alternatives Considered Apache Flume is a very good solution when your project is not very complex at transformation and enrichment, and good if you have an external management suite like Cloudera, Hortonworks, etc. But it is not a real EAI or ETL like AB Initio or Attunity so you need to know exactly what you want. On the other hand being an opensource project give Apache a lot of room to personalize thanks to its plug-able architecture and has a very nice performance having a very low CPU and Memory footprint, a single server can do the job on many occasions, as opposed to the multi-server architecture of paid products.
Read full review Besides Hive, I have used
Google BigQuery , which is costly but have very high computation speed. Amazon Redshift is the another product, I used in my recent organisation. Both Redshift and BigQuery are managed solution whereas Hive needs to be managed
Read full review Return on Investment Flume has simplified a lot many of our ingest procedures, easier to deploy and integrate than a classical EAI, reducing the time to market But opposed to EAIs if the project starts to grow in complexity Apache Flume project may not be as suitable Read full review Apache hive is secured and scalable solution that helps in increasing the overall organization productivity. Apache hive can handle and process large amount of data in a sufficient time manner. It simplifies writing SQL queries, hence helping the organization as most companies use SQL for all query jobs. Read full review ScreenShots