Apache Flume is a product enabling the flow of logs and other data into a Hadoop environment.
N/A
Apache Hive
Score 8.0 out of 10
N/A
Apache Hive is database/data warehouse software that supports data querying and analysis of large datasets stored in the Hadoop distributed file system (HDFS) and other compatible systems, and is distributed under an open source license.
For storing bulk amount of data in a tabular manner, and where there's no need need of primary key, or just in case, if redundant data is received, it will not cause a problem. For small amounts of data, it does run MR, so beware. If your intention is to use it as a …
Apache Flume is well suited when the use case is log data ingestion and aggregate only, for example for compliance of configuration management. It is not well suited where you need a general-purpose real-time data ingestion pipeline that can receive log data and other forms of data streams (eg IoT, messages).
Software work execution is on a large scale, it is good to use for new projects or organizational changes, data lineage mapping has always been dubious but this one has had good results. You can store and synchronize data from different departments, the storage process can be manual but it is best automated.
Apache Hive allows use to write expressive solutions to complex problems thanks to its SQL-like syntax.
Relatively easy to set up and start using.
Very little ramp-up to start using the actual product, documentation is very thorough, there is an active community, and the code base is constantly being improved.
Hive is a very good big data analysis and ad-hoc query platform, which supports scaling also. The BI processes can be easily integrated with Hadoop via the Hive. It can deal with a much larger data set that traditional RDBMS can not. It is a "must-have" component of the big data domain.
Apache Flume is open-source so support is limited. Never the less, it has great documentation and best practices documents from their end-users so it is not hard to use, setup and configure.
Apache Hive is a FOSS project and its open source. We need not definitely comment on anything about the support of open source and its developer community. But, it has got tremendous developer support, awesome documentation. I would justify the fact that much support can be gathered from the community backup.
Apache Flume is a very good solution when your project is not very complex at transformation and enrichment, and good if you have an external management suite like Cloudera, Hortonworks, etc. But it is not a real EAI or ETL like AB Initio or Attunity so you need to know exactly what you want. On the other hand being an opensource project give Apache a lot of room to personalize thanks to its plug-able architecture and has a very nice performance having a very low CPU and Memory footprint, a single server can do the job on many occasions, as opposed to the multi-server architecture of paid products.
Besides Hive, I have used Google BigQuery, which is costly but have very high computation speed. Amazon Redshift is the another product, I used in my recent organisation. Both Redshift and BigQuery are managed solution whereas Hive needs to be managed