The Vertica Analytics Platform supplies enterprise data warehouses with big data analytics capabilities and modernization. Vertica is owned and supported by OpenText.
Apache Cassandra is a NoSQL database and well suited where you need highly available, linearly scalable, tunable consistency and high performance across varying workloads. It has worked well for our use cases, and I shared my experiences to use it effectively at the last Cassandra summit! http://bit.ly/1Ok56TK It is a NoSQL database, finally you can tune it to be strongly consistent and successfully use it as such. However those are not usual patterns, as you negotiate on latency. It works well if you require that. If your use case needs strongly consistent environments with semantics of a relational database or if the use case needs a data warehouse, or if you need NoSQL with ACID transactions, Apache Cassandra may not be the optimum choice.
Vertica as a data warehouse to deliver analytics in-house and even to your client base on scale is not rivaled anywhere in the market. Frankly, in my experience it is not even close to equaled. Because it is such a powerful data warehouse, some people attempt to use it as a transactional database. It certainly is not one of those. Individual row inserts are slow and do not perform well. Deletes are a whole other story. RDBMS it is definitely not. OLAP it rocks.
Continuous availability: as a fully distributed database (no master nodes), we can update nodes with rolling restarts and accommodate minor outages without impacting our customer services.
Linear scalability: for every unit of compute that you add, you get an equivalent unit of capacity. The same application can scale from a single developer's laptop to a web-scale service with billions of rows in a table.
Amazing performance: if you design your data model correctly, bearing in mind the queries you need to answer, you can get answers in milliseconds.
Time-series data: Cassandra excels at recording, processing, and retrieving time-series data. It's a simple matter to version everything and simply record what happens, rather than going back and editing things. Then, you can compute things from the recorded history.
Cassandra runs on the JVM and therefor may require a lot of GC tuning for read/write intensive applications.
Requires manual periodic maintenance - for example it is recommended to run a cleanup on a regular basis.
There are a lot of knobs and buttons to configure the system. For many cases the default configuration will be sufficient, but if its not - you will need significant ramp up on the inner workings of Cassandra in order to effectively tune it.
Could use some work on better integrating with cloud providers and open source technologies. For AWS you will find an AMI in the marketplace and recently a connector for loading data from S3 directly was created. With last release, integration with Kafka was added that can help.
Managing large workloads (concurrent queries) is a bit challenging.
Having a way to provide an estimate on the duration for currently executing queries / etc. can be helpful. Vertica provides some counters for the query execution engine that are helpful but some may find confusing.
Unloading data over JDBC is very slow. We've had to come up with alternatives based on vsql, etc. Not a very clean, official on how to unload data.
I would recommend Cassandra DB to those who know their use case very well, as well as know how they are going to store and retrieve data. If you need a guarantee in data storage and retrieval, and a DB that can be linearly grown by adding nodes across availability zones and regions, then this is the database you should choose.
I haven't had any recent opportunity to reach out to Vertica support. From what I remember, I believe whenever I reached out to them the experience was smooth.
We evaluated MongoDB also, but don't like the single point failure possibility. The HBase coupled us too tightly to the Hadoop world while we prefer more technical flexibility. Also HBase is designed for "cold"/old historical data lake use cases and is not typically used for web and mobile applications due to its performance concern. Cassandra, by contrast, offers the availability and performance necessary for developing highly available applications. Furthermore, the Hadoop technology stack is typically deployed in a single location, while in the big international enterprise context, we demand the feasibility for deployment across countries and continents, hence finally we are favor of Cassandra
Vertica performs well when the query has good stats and is tuned well. Options for GUI clients are ugly and outdated. IO optimized: it's a columnar store with no indexing structures to maintain like traditional databases. The indexing is achieved by storing the data sorted on disk, which itself is run transparently as a background process.
I have no experience with this but from the blogs and news what I believe is that in businesses where there is high demand for scalability, Cassandra is a good choice to go for.
Since it works on CQL, it is quite familiar with SQL in understanding therefore it does not prevent a new employee to start in learning and having the Cassandra experience at an industrial level.