Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research and by community contributors.
N/A
Keras
Score 7.3 out of 10
N/A
Keras is a Python deep learning library
N/A
Pricing
Caffe Deep Learning Framework
Keras
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Caffe Deep Learning Framework
Keras
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Caffe Deep Learning Framework
Keras
Considered Both Products
Caffe Deep Learning Framework
Verified User
Strategist
Chose Caffe Deep Learning Framework
TensorFlow is kind of low-level API most suited for those developers who like to control the details, while Keras provides some kind of high-level API for those users who want to boost their project or experiment by reusing most of the existing architecture or models and the …
Keras is a good point where you can learn lots of things and also have hands-on experience. There is not much comparison of Keras with Tensorlow, as Keras is a wrapper library which supports TensorFlow and Theano as backends for computation. But once you have enough knowledge …
TensorFlow and Caffe are bit hard to learn but they give you power to implement everything by you own. But most of the time it is not required to implement our own algorithm, we can solve the problem with just using the already provided algorithms. As compared to TensorFlow and …
Caffe is only appropriate for some new beginners who don't want to write any lines of code, just want to use existing models for image recognition, or have some taste of the so-called Deep Learning.
Keras is quite perfect, if the aim is to build the standard Deep Learning model, and materialize it to serve the real business use case, while it is not suitable if the purpose is for research and a lot of non-standard try out and customization are required, in that case either directly goes to low level TensorFlow API or Pytorch
One of the reason to use Keras is that it is easy to use. Implementing neural network is very easy in this, with just one line of code we can add one layer in the neural network with all it's configurations.
It provides lot of inbuilt thing like cov2d, conv2D, maxPooling layers. So it makes fast development as you don't need to write everything on your own. It comes with lot of data processing libraries in it like one hot encoder which also makes your development easy and fast.
It also provides functionality to develop models on mobile device.
Caffe's model definition - static configuration files are really painful. Maintaining big configuration files with so many parameters and details of many layers can be a really challenging task.
Besides imagine and vision (CNN), Caffe also gradually adds some other NN architecture support. It doesn't play well in a recurrent domain, so we have to say variety is a problem.
Caffe's deployment for production is not easy. The community support and project development all mean it is almost fading out of the market.
The learning curve is quite steep. Although TensorFlow's is not easy to master either, the reward for Caffe is much less than the TensorFlow can offer.
TensorFlow is kind of low-level API most suited for those developers who like to control the details, while Keras provides some kind of high-level API for those users who want to boost their project or experiment by reusing most of the existing architecture or models and the accumulated best practice. However, Caffe isn't like either of them so the position for the user is kind of embarrassing.
Keras is good to develop deep learning models. As compared to TensorFlow, it's easy to write code in Keras. You have more power with TensorFlow but also have a high error rate because you have to configure everything by your own. And as compared to MATLAB, I will always prefer Keras as it is easy and powerful as well.