I use both Apache Pig and its alternatives like Apache Spark & Apache Hive. Apache Pig was one of the best options in Big Data's initial stages. But now alternatives have taken over the market, rendering Apache Pig behind in the competition. But it is still a better alternative …
It takes me less time to write a Pig script than get a Spark program running for batch ETL workloads. Compared to Spark, Pig has a steeper learning curve because it employs a proprietary programming language. In one script and one fine, it can handle both Map Reduce and Hadoop. …
Apache Pig might help to start things faster at first and it was one of the best tool years back but it lacks important features that are needed in the data engineering world right now. Pig also has a steeper learning curve since it uses a proprietary language compared to Spark …
Early on Apache Pig was a great tool for easily writing distributed processing applications without needing to write a complete Java MapReduce job from scratch, but as time as moved on there now better alternatives to get results faster for both ad-hoc analysis and for …
- Provided better ways for optimized hadoop jobs than Hive but not anymore. - Spark DSL is much more advanced and compute times are significantly less.
Spark has primarily replaced my use of writing pure Hadoop MapReduce or Apache Pig jobs for processing data. I like the fact that I can alternate between the main programming languages that I know - Java and Python - and use those to learn the Scala API. Spark also can be …
Apache Pig and Apache Hive provide most of the things spark provide but apache spark has more features like actions and transformations which are easy to code. Spark uses optimization technique as we can select driver program and manipulate DAG (Directed Acyclic Graph) Python …
All the above systems work quite well on big data transformations whereas Spark really shines with its bigger API support and its ability to read from and write to multiple data sources. Using Spark one can easily switch between declarative versus imperative versus functional …
Even with Python, MapReduce is lengthy coding. Combination of Python with Apache Spark will not only shorten the code, but it will effectively increase the speed of algorithms. Occasionally, I use MapReduce, but Apache Spark will replace MapReduce very soon. It has many …
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and …
Apache Pig is best suited for ETL-based data processes. It is good in performance in handling and analyzing a large amount of data. it gives faster results than any other similar tool. It is easy to implement and any user with some initial training or some prior SQL knowledge can work on it. Apache Pig is proud to have a large community base globally.
Well suited: To most of the local run of datasets and non-prod systems - scalability is not a problem at all. Including data from multiple types of data sources is an added advantage. MLlib is a decently nice built-in library that can be used for most of the ML tasks. Less appropriate: We had to work on a RecSys where the music dataset that we used was around 300+Gb in size. We faced memory-based issues. Few times we also got memory errors. Also the MLlib library does not have support for advanced analytics and deep-learning frameworks support. Understanding the internals of the working of Apache Spark for beginners is highly not possible.
If the team looking to use Apache Spark is not used to debug and tweak settings for jobs to ensure maximum optimizations, it can be frustrating. However, the documentation and the support of the community on the internet can help resolve most issues. Moreover, it is highly configurable and it integrates with different tools (eg: it can be used by dbt core), which increase the scenarios where it can be used
1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Apache Pig might help to start things faster at first and it was one of the best tool years back but it lacks important features that are needed in the data engineering world right now. Pig also has a steeper learning curve since it uses a proprietary language compared to Spark which can be coded with Python, Java.
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Higher learning curve than other similar technologies so on-boarding new engineers or change ownership of Apache Pig code tends to be a bit of a headache
Once the language is learned and understood it can be relatively straightforward to write simple Pig scripts so development can go relatively quickly with a skilled team
As distributed technologies grow and improve, overall Apache Pig feels left in the dust and is more legacy code to support than something to actively develop with.