If your application needs a relational data store and uses other AWS services, AWS RDS is a no-brainer. It offers all the traditional database features, makes it a snap to set up, creates cross-region replication, has advanced security, built-in monitoring, and much more at a very good price. You can also set up streaming to a data lake using various other AWS services on your RDS.
MonetDB is great when you are performing adhoc queries on a large set of data. For example, if you store data in a typical RDBMS such as MySQL or Postgres and want to join large tables for analytics but the query runs unacceptably slow then MonetDB can act as a second database to offload complex queries. Based on my experience, it may not be a production-ready database since there aren't many DBAs familiar with it and due to lack of documentation, maintenance can become a little tricky.
Automated Database Management: We use it for streamlining routine tasks like software patching and database backups.
Scalability on Demand: we use it to handle traffic spikes, scaling both vertically and horizontally.
Database Engine Compatibility: It works amazingly with multiple database engines used by different departments within our organization including MySQL, PostgreSQL, SQL Server, and Oracle.
Monitoring: It covers our extensive monitoring and logging, and also has great compatibility with Amazon CloudWatch
It is a little difficult to configure and connect to an RDS instance. The integration with ECS can be made more seamless.
Exploring features within RDS is not very easy and intuitive. Either a human friendly documentation should be added or the User Interface be made intuitive so that people can explore and find features on their own.
There should be tools to analyze cost and minimize it according to the usage.
This is an open source software so there are obvious drawbacks, the biggest of which is a lack of documentation.
MonetDB does not seem to be well known outside of the academic environment so there is less information when you are searching for answers of any type.
I'd like to see more use cases and/or best practices so that commercial companies like ours can optimally use all of its highly performant features.
The code is written in C/C++ and this can be negative if you are a mainly java-shop and need UDF - User Defined Function.
We do renew our use of Amazon Relational Database Service. We don't have any problems faced with RDS in place. RDS has taken away lot of overhead of hosting database, managing the database and keeping a team just to manage database. Even the backup, security and recovery another overhead that has been taken away by RDS. So, we will keep on using RDS.
I've been using AWS Relational Database Services in several projects in different environments and from the AWS products, maybe this one together to EC2 are my favourite. They deliver what they promise. Reliable, fast, easy and with a fair price (in comparison to commercial products which have obscure license agreements).
I have only had good experiences in working with AWS support. I will admit that my experience comes from the benefit of having a premium tier of support but even working with free-tier accounts I have not had problems getting help with AWS products when needed. And most often, the docs do a pretty good job of explaining how to operate a service so a quick spin through the docs has been useful in solving problems.
Amazon Relational Database Service (RDS) stands out among similar products due to its seamless integration with other AWS services, automated backups, and multi-AZ deployments for high availability. Its support for various database engines, such as MySQL, PostgreSQL, and Oracle, provides flexibility. Additionally, RDS offers managed security features, including encryption and IAM integration, enhancing data protection. The pay-as-you-go pricing model makes it cost-effective. Overall, Amazon RDS excels in ease of use, scalability, and a comprehensive feature set, making it a top choice for organizations seeking a reliable and scalable managed relational database service in the cloud.
We have used Five9 in my previous company but on a much smaller scale. It was more expensive, however we were using it for a max of 50 employees, now we need a much bigger platform. We also used Five9 for other things, like phone dialers etc. so it was a little different.
If you are familiar with a general database concept and played with open source products before then MonetDB will give you immediate return in terms of productivity since developers can quickly develop and verify their test cases involving back-end database with a large sample data set.
There is a stiff learning curve due to lack of documentation and sparse information available on the internet.
Overall experience has been positive since MonetDB gives you another option when it comes to building out a data warehouse.