Hadoop is an open source software from Apache, supporting distributed processing and data storage. Hadoop is popular for its scalability, reliability, and functionality available across commoditized hardware.
N/A
Azure Data Lake Storage
Score 9.0 out of 10
N/A
Azure Data Lake Storage Gen2 is a highly scalable and cost-effective data lake solution for big data analytics. It combines the power of a high-performance file system with massive scale and economy to help you speed your time to insight. Data Lake Storage Gen2 extends Azure Blob Storage capabilities and is optimized for analytics workloads.
I feel that this is a highly reliable and scalable solution computing technology that is highly capable of processing large data sets across multiple servers and thousands of machines in a well-defined and distributed manner. Apache Hadoop can automatically scale up the number …
Vice President, Chief Architect, Development Manager and Software Engineer
Chose Apache Hadoop
Hands down, Hadoop is less expensive than the other platforms we considered. Cloudera was easier to set up but the expense ruled it out. MS-SQL didn't have the performance we saw with the Hadoop clusters and was more expensive. We considered MS-SQL mainly for its ability …
We have used both Hadoop and GCS buckets for our storage needs of very large healthcare data. In terms of comparison with the Hadoop distributed Files system, Azure Data Lake Storage always stands in a far better position due to easy integration with various latest and widely …
Altogether, I want to say that Apache Hadoop is well-suited to a larger and unstructured data flow like an aggregation of web traffic or even advertising. I think Apache Hadoop is great when you literally have petabytes of data that need to be stored and processed on an ongoing basis. Also, I would recommend that the software should be supplemented with a faster and interactive database for a better querying service. Lastly, it's very cost-effective so it is good to give it a shot before coming to any conclusion.
Azure Data Lake is an absolutely essential piece of a modern data and analytics platform. Over the past 2 years, our usage of Azure Data Lake as a reporting source has continued to grow and far exceeds more traditional sources like MS SQL, Oracle, etc.
Hadoop is organization-independent and can be used for various purposes ranging from archiving to reporting and can make use of economic, commodity hardware. There is also a lot of saving in terms of licensing costs - since most of the Hadoop ecosystem is available as open-source and is free
As Hadoop enterprise licensed version is quite fine tuned and easy to use makes it good choice for Hadoop administrators. It’s scalability and integration with Kerberos is good option for authentication and authorisation. installation can be improved. logging can be improved so that it become easier for debugging purposes. parallel processing of data is achieved easily.
It's a great value for what you pay, and most Data Base Administrators (DBAs) can walk in and use it without substantial training. I tend to dabble on the analyst side, so querying the data I need feels like it can take forever, especially on higher traffic days like Monday.
Not used any other product than Hadoop and I don't think our company will switch to any other product, as Hadoop is providing excellent results. Our company is growing rapidly, Hadoop helps to keep up our performance and meet customer expectations. We also use HDFS which provides very high bandwidth to support MapReduce workloads.
Azure Data Lake Storage from a functionality perspective is a much easier solution to work with. It's implementation from Amazon EMR went smooth, and continued usage is definitely better. However, Amazon EMR was significantly cheaper overall between the high transaction fees and cost of storage due to growth. The two both have their advantages and disadvantages, but the functionality of Azure Data Lake Storage outweighed it's cost
There are many advantages of Hadoop as first it has made the management and processing of extremely colossal data very easy and has simplified the lives of so many people including me.
Hadoop is quite interesting due to its new and improved features plus innovative functions.
Instead of having separate pools of storage for data we are now operating on a single layer platform which has cut down on time spent on maintaining those separate pools.
We have had more of an ROI with the scalability as we are able to control costs of storage when need be.
We are able to operate in a more streamlined approach as we are able to stay within the Azure suite of products and integrate seamlessly with the rest of the applications in our cloud-based infrastructure