The Dataiku platform unifies all data work, from analytics to Generative AI. It can modernize enterprise analytics and accelerate time to insights with visual, cloud-based tooling for data preparation, visualization, and workflow automation.
N/A
Pytorch
Score 9.3 out of 10
N/A
Pytorch is an open source machine learning (ML) framework boasting a rich ecosystem of tools and libraries that extend PyTorch and support development in computer vision, NLP and or that supports other ML goals.
Dataiku DSS is very well suited to handle large datasets and projects which requires a huge team to deliver results. This allows users to collaborate with each other while working on individual tasks. The workflow is easily streamlined and every action is backed up, allowing users to revert to specific tasks whenever required. While Dataiku DSS works seamlessly with all types of projects dealing with structured datasets, I haven't come across projects using Dataiku dealing with images/audio signals. But a workaround would be to store the images as vectors and perform the necessary tasks.
They have created Pytorch Lightening on top of Pytorch to make the life of Data Scientists easy so that they can use complex models they need with just a few lines of code, so it's becoming popular. As compared to TensorFlow(Keras), where we can create custom neural networks by just adding layers, it's slightly complicated in Pytorch.
As I have described earlier, the intuitiveness of this tool makes it great as well as the variety of users that can use this tool. Also, the plugins available in their repository provide solutions to various data science problems.
The big advantage of PyTorch is how close it is to the algorithm. Oftentimes, it is easier to read Pytorch code than a given paper directly. I particularly like the object-oriented approach in model definition; it makes things very clean and easy to teach to software engineers.
The support team is very helpful, and even when we discover the missing features, after providing enough rational reasons and requirements, they put into it their development pipeline for the future release.
Strictly for Data Science operations, Anaconda can be considered as a subset of Dataiku DSS. While Anaconda supports Python and R programming languages, Dataiku also provides this facility, but also provides GUI to creates models with just a click of a button. This provides the flexibility to users who do not wish to alter the model hyperparameters in greater depths. Writing codes to extract meaningful data is time consuming compared to Dataiku's ability to perform feature engineering and data transformation through click of a button.
Pytorch is very, very simple compared to TensorFlow. Simple to install, less dependency issues, and very small learning curve. TensorFlow is very much optimised for robust deployment but very complicated to train simple models and play around with the loss functions. It needs a lot of juggling around with the documentation. The research community also prefers PyTorch, so it becomes easy to find solutions to most of the problems. Keras is very simple and good for learning ML / DL. But when going deep into research or building some product that requires a lot of tweaks and experimentation, Keras is not suitable for that. May be good for proving some hypotheses but not good for rigorous experimentation with complex models.