Amazon SageMaker vs. Azure Machine Learning

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Amazon SageMaker
Score 8.2 out of 10
N/A
Amazon SageMaker enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale. Amazon SageMaker removes all the barriers that typically slow down developers who want to use machine learning.N/A
Azure Machine Learning
Score 8.3 out of 10
N/A
Microsoft's Azure Machine Learning is and end-to-end data science and analytics solution that helps professional data scientists to prepare data, develop experiments, and deploy models in the cloud. It replaces the Azure Machine Learning Workbench.
$0
per month
Pricing
Amazon SageMakerAzure Machine Learning
Editions & Modules
No answers on this topic
Studio Pricing - Free
$0.00
per month
Production Web API - Dev/Test
$0.00
per month
Studio Pricing - Standard
$9.99
per ML studio workspace/per month
Production Web API - Standard S1
$100.13
per month
Production Web API - Standard S2
$1000.06
per month
Production Web API - Standard S3
$9999.98
per month
Offerings
Pricing Offerings
Amazon SageMakerAzure Machine Learning
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Amazon SageMakerAzure Machine Learning
Considered Both Products
Amazon SageMaker

No answer on this topic

Azure Machine Learning
Chose Azure Machine Learning
The Azure Machine Learning Studio eliminates the complex tasks of data engineering and python coding for the data scientists to build models a simpler way. While SageMaker provide[s] a similar environment, [it] requires higher knowledge of data engineering. Even same for the …
Chose Azure Machine Learning
It is easier to learn, it has a very cost effective license for use, it has native build and created for Azure cloud services, and that makes it perfect when compared against the alternatives. As a Microsoft tool, it has been built to contain many visual features and improved …
Top Pros
Top Cons
Best Alternatives
Amazon SageMakerAzure Machine Learning
Small Businesses
Google Cloud AI
Google Cloud AI
Score 8.4 out of 10
Jupyter Notebook
Jupyter Notebook
Score 9.1 out of 10
Medium-sized Companies
Google Cloud AI
Google Cloud AI
Score 8.4 out of 10
Posit
Posit
Score 9.8 out of 10
Enterprises
Google Cloud AI
Google Cloud AI
Score 8.4 out of 10
Posit
Posit
Score 9.8 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Amazon SageMakerAzure Machine Learning
Likelihood to Recommend
9.0
(5 ratings)
8.0
(4 ratings)
Likelihood to Renew
-
(0 ratings)
7.0
(1 ratings)
Usability
-
(0 ratings)
7.0
(2 ratings)
Support Rating
-
(0 ratings)
7.9
(2 ratings)
Implementation Rating
-
(0 ratings)
8.0
(1 ratings)
User Testimonials
Amazon SageMakerAzure Machine Learning
Likelihood to Recommend
Amazon AWS
It allows for one-click processes and for things to be auto checked before they are moved through the process but through the system. It also makes training easy. I am able to train users on the basic fundamentals of the tool and how it is used very easily as it is fully managed on its own which is incredible.
Read full review
Microsoft
For [a] data scientist require[d] to build a machine learning model, so he/she didn't worry about infrastructure to maintain it.
All kind of feature[s] such as train, build, deploy and monitor the machine learning model available in a single suite.
If someone has [their] own environment for ML studio, so there [it would] not [be] useful for them.
Read full review
Pros
Amazon AWS
  • Machine Learning at scale by deploying huge amount of training data
  • Accelerated data processing for faster outputs and learnings
  • Kubernetes integration for containerized deployments
  • Creating API endpoints for use by technical users
Read full review
Microsoft
  • User friendliness: This is by far the most user friendly tool I've seen in analytics. You don't need to know how to code at all! Just create a few blocks, connect a few lines and you are capable of running a boosted decision tree with a very high R squared!
  • Speed: Azure ML is a cloud based tool, so processing is not made with your computer, making the reliability and speed top notch!
  • Cost: If you don't know how to code, this is by far the cheapest machine learning tool out there. I believe it costs less than $15/month. If you know how to code, then R is free.
  • Connectivity: It is super easy to embed R or Python codes on Azure ML. So if you want to do more advanced stuff, or use a model that is not yet available on Azure ML, you can simply paste the code on R or Python there!
  • Microsoft environment: Many many companies rely on the Microsoft suite. And Azure ML connects perfectly with Excel, CSV and Access files.
Read full review
Cons
Amazon AWS
  • It's very good for the hardcore programmer, but a little bit complex for a data scientist or new hire who does not have a strong programming background.
  • Most of the popular library and ML frameworks are there, but we still have to depend on them for new releases.
Read full review
Microsoft
  • It would be great to have text tips that could ease new users to the platform, especially if an error shows up
  • Scenario-based documentation
  • Pre-processing of modules that had been previously run. Sometimes they need to be re-run for no apparent reason
Read full review
Usability
Amazon AWS
No answers on this topic
Microsoft
Easy and fastest way to develop, test, deploy and monitor the machine learning model.
- Easy to load the data set
-Drag and drop the process of the Machine learning life cycle.
Read full review
Support Rating
Amazon AWS
No answers on this topic
Microsoft
Support is nonexistent. It's very frustrating to try and find someone to actually talk to. The robot chatbots are just not well trained.
Read full review
Implementation Rating
Amazon AWS
No answers on this topic
Microsoft
Not sure
Read full review
Alternatives Considered
Amazon AWS
Amazon SageMaker took the heavy lifting out of building and creating models. It allowed for our organization to use our current system for integration and essentially added on a feature to help all levels of Data scientists and IT professionals in our department and company as a whole. The training was simple as well.
Read full review
Microsoft
It is easier to learn, it has a very cost effective license for use, it has native build and created for Azure cloud services, and that makes it perfect when compared against the alternatives. As a Microsoft tool, it has been built to contain many visual features and improved usability even for non-specialist users.
Read full review
Return on Investment
Amazon AWS
  • We have been able to deliver data products more rapidly because we spend less time building data pipelines and model servers.
  • We can prototype more rapidly because it is easy to configure notebooks to access AWS resources.
  • For our use-cases, serving models is less expensive with SageMaker than bespoke servers.
Read full review
Microsoft
  • Productivity: Instead of coding and recoding, Azure ML helped my organization to get to meaningful results faster;
  • Cost: Azure ML can save hundreds (or even thousands) of dollars for an organization, since the license costs around $15/month per seat.
  • Focus on insights and not on statistics: Since running a model is so easy, analysts can focus more on recommendations and insights, rather than statistical details
Read full review
ScreenShots