Amazon SageMaker enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale. Amazon SageMaker removes all the barriers that typically slow down developers who want to use machine learning.
N/A
Azure Machine Learning
Score 8.3 out of 10
N/A
Microsoft's Azure Machine Learning is and end-to-end data science and analytics solution that helps professional data scientists to prepare data, develop experiments, and deploy models in the cloud. It replaces the Azure Machine Learning Workbench.
$0
per month
Pricing
Amazon SageMaker
Azure Machine Learning
Editions & Modules
No answers on this topic
Studio Pricing - Free
$0.00
per month
Production Web API - Dev/Test
$0.00
per month
Studio Pricing - Standard
$9.99
per ML studio workspace/per month
Production Web API - Standard S1
$100.13
per month
Production Web API - Standard S2
$1000.06
per month
Production Web API - Standard S3
$9999.98
per month
Offerings
Pricing Offerings
Amazon SageMaker
Azure Machine Learning
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Amazon SageMaker
Azure Machine Learning
Considered Both Products
Amazon SageMaker
No answer on this topic
Azure Machine Learning
Verified User
Professional
Chose Azure Machine Learning
The Azure Machine Learning Studio eliminates the
complex tasks of data engineering and python coding for the data scientists to build models a simpler way. While SageMaker provide[s] a similar environment, [it] requires higher knowledge of data engineering. Even same for the …
Verified User
Team Lead
Chose Azure Machine Learning
It is easier to learn, it has a very cost effective license for use, it has native build and created for Azure cloud services, and that makes it perfect when compared against the alternatives. As a Microsoft tool, it has been built to contain many visual features and improved …
It allows for one-click processes and for things to be auto checked before they are moved through the process but through the system. It also makes training easy. I am able to train users on the basic fundamentals of the tool and how it is used very easily as it is fully managed on its own which is incredible.
User friendliness: This is by far the most user friendly tool I've seen in analytics. You don't need to know how to code at all! Just create a few blocks, connect a few lines and you are capable of running a boosted decision tree with a very high R squared!
Speed: Azure ML is a cloud based tool, so processing is not made with your computer, making the reliability and speed top notch!
Cost: If you don't know how to code, this is by far the cheapest machine learning tool out there. I believe it costs less than $15/month. If you know how to code, then R is free.
Connectivity: It is super easy to embed R or Python codes on Azure ML. So if you want to do more advanced stuff, or use a model that is not yet available on Azure ML, you can simply paste the code on R or Python there!
Microsoft environment: Many many companies rely on the Microsoft suite. And Azure ML connects perfectly with Excel, CSV and Access files.
It's very good for the hardcore programmer, but a little bit complex for a data scientist or new hire who does not have a strong programming background.
Most of the popular library and ML frameworks are there, but we still have to depend on them for new releases.
Amazon SageMaker took the heavy lifting out of building and creating models. It allowed for our organization to use our current system for integration and essentially added on a feature to help all levels of Data scientists and IT professionals in our department and company as a whole. The training was simple as well.
It is easier to learn, it has a very cost effective license for use, it has native build and created for Azure cloud services, and that makes it perfect when compared against the alternatives. As a Microsoft tool, it has been built to contain many visual features and improved usability even for non-specialist users.
Productivity: Instead of coding and recoding, Azure ML helped my organization to get to meaningful results faster;
Cost: Azure ML can save hundreds (or even thousands) of dollars for an organization, since the license costs around $15/month per seat.
Focus on insights and not on statistics: Since running a model is so easy, analysts can focus more on recommendations and insights, rather than statistical details