Amazon SageMaker enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale. Amazon SageMaker removes all the barriers that typically slow down developers who want to use machine learning.
N/A
TensorFlow
Score 8.3 out of 10
N/A
TensorFlow is an open-source machine learning software library for numerical computation using data flow graphs. It was originally developed by Google.
Amazon SageMaker is the best option for machine learning if you are already using the Amazon data science ecosystem. The software integrates nicely with MapReduce and most of the other Amazon tools. Additionally, MapReduce does a fairly good job of making the development of …
Amazon SageMaker is a great tool for developing machine learning models that take more effort than just point-and-click type of analyses. The software works well with the other tools in the Amazon ecosystem, so if you use Amazon Web Services or are thinking about it, SageMaker would be a great addition. SageMaker is great for consumer insights, predictive analytics, and looking for gems of insight in the massive amounts of data we create. SageMaker is less suitable for analysts who do generally "small" data analyses, and "small" data analyses in today's world can be billions of records.
TensorFlow is great for most deep learning purposes. This is especially true in two domains: 1. Computer vision: image classification, object detection and image generation via generative adversarial networks 2. Natural language processing: text classification and generation. The good community support often means that a lot of off-the-shelf models can be used to prove a concept or test an idea quickly. That, and Google's promotion of Colab means that ideas can be shared quite freely. Training, visualizing and debugging models is very easy in TensorFlow, compared to other platforms (especially the good old Caffe days). In terms of productionizing, it's a bit of a mixed bag. In our case, most of our feature building is performed via Apache Spark. This means having to convert Parquet (columnar optimized) files to a TensorFlow friendly format i.e., protobufs. The lack of good JVM bindings mean that our projects end up being a mix of Python and Scala. This makes it hard to reuse some of the tooling and support we wrote in Scala. This is where MXNet shines better (though its Scala API could do with more work).
Theano is perhaps a bit faster and eats up less memory than TensorFlow on a given GPU, perhaps due to element-wise ops. Tensorflow wins for multi-GPU and “compilation” time.
Community support for TensorFlow is great. There's a huge community that truly loves the platform and there are many examples of development in TensorFlow. Often, when a new good technique is published, there will be a TensorFlow implementation not long after. This makes it quick to ally the latest techniques from academia straight to production-grade systems. Tooling around TensorFlow is also good. TensorBoard has been such a useful tool, I can't imagine how hard it would be to debug a deep neural network gone wrong without TensorBoard.
Amazon SageMaker comes with other supportive services like S3, SQS, and a vast variety of servers on EC2. It's very comfortable to manage the process and also support the end application by one click hosting option. Also, it charges on the base of what you use and how long you use it, so it becomes less costly compared to others.
Keras is built on top of TensorFlow, but it is much simpler to use and more Python style friendly, so if you don't want to focus on too many details or control and not focus on some advanced features, Keras is one of the best options, but as far as if you want to dig into more, for sure TensorFlow is the right choice