Likelihood to Recommend It allows for one-click processes and for things to be auto checked before they are moved through the process but through the system. It also makes training easy. I am able to train users on the basic fundamentals of the tool and how it is used very easily as it is fully managed on its own which is incredible.
Read full review TensorFlow is great for most deep learning purposes. This is especially true in two domains: 1. Computer vision: image classification, object detection and image generation via generative adversarial networks 2. Natural language processing: text classification and generation. The good community support often means that a lot of off-the-shelf models can be used to prove a concept or test an idea quickly. That, and Google's promotion of Colab means that ideas can be shared quite freely. Training, visualizing and debugging models is very easy in TensorFlow, compared to other platforms (especially the good old Caffe days). In terms of productionizing, it's a bit of a mixed bag. In our case, most of our feature building is performed via Apache Spark. This means having to convert Parquet (columnar optimized) files to a TensorFlow friendly format i.e., protobufs. The lack of good JVM bindings mean that our projects end up being a mix of Python and Scala. This makes it hard to reuse some of the tooling and support we wrote in Scala. This is where MXNet shines better (though its Scala API could do with more work).
Read full review Pros Machine Learning at scale by deploying huge amount of training data Accelerated data processing for faster outputs and learnings Kubernetes integration for containerized deployments Creating API endpoints for use by technical users Read full review A vast library of functions for all kinds of tasks - Text, Images, Tabular, Video etc. Amazing community helps developers obtain knowledge faster and get unblocked in this active development space. Integration of high-level libraries like Keras and Estimators make it really simple for a beginner to get started with neural network based models. Read full review Cons It's very good for the hardcore programmer, but a little bit complex for a data scientist or new hire who does not have a strong programming background. Most of the popular library and ML frameworks are there, but we still have to depend on them for new releases. Read full review RNNs are still a bit lacking, compared to Theano. Cannot handle sequence inputs Theano is perhaps a bit faster and eats up less memory than TensorFlow on a given GPU, perhaps due to element-wise ops. Tensorflow wins for multi-GPU and “compilation” time. Read full review Usability Support of multiple components and ease of development.
Read full review Support Rating Community support for TensorFlow is great. There's a huge community that truly loves the platform and there are many examples of development in TensorFlow. Often, when a new good technique is published, there will be a TensorFlow implementation not long after. This makes it quick to ally the latest techniques from academia straight to production-grade systems. Tooling around TensorFlow is also good. TensorBoard has been such a useful tool, I can't imagine how hard it would be to debug a deep neural network gone wrong without TensorBoard.
Read full review Implementation Rating Use of cloud for better execution power is recommended.
Read full review Alternatives Considered Amazon SageMaker took the heavy lifting out of building and creating models. It allowed for our organization to use our current system for integration and essentially added on a feature to help all levels of Data scientists and IT professionals in our department and company as a whole. The training was simple as well.
Read full review Keras is built on top of TensorFlow, but it is much simpler to use and more Python style friendly, so if you don't want to focus on too many details or control and not focus on some advanced features,
Keras is one of the best options, but as far as if you want to dig into more, for sure TensorFlow is the right choice
Read full review Return on Investment We have been able to deliver data products more rapidly because we spend less time building data pipelines and model servers. We can prototype more rapidly because it is easy to configure notebooks to access AWS resources. For our use-cases, serving models is less expensive with SageMaker than bespoke servers. Read full review Learning is s bit difficult takes lot of time. Developing or implementing the whole neural network is time consuming with this, as you have to write everything. Once you have learned this, it make your job very easy of getting the good result. Read full review ScreenShots