Amazon Tensor Flow vs. IBM watsonx.ai

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Amazon Tensor Flow
Score 8.0 out of 10
N/A
Amazon TensorFlow enables developers to quickly and easily get started with deep learning in the cloud.N/A
IBM watsonx.ai
Score 8.7 out of 10
N/A
Watsonx.ai is part of the IBM watsonx platform that brings together new generative AI capabilities, powered by foundation models, and traditional machine learning into a studio spanning the AI lifecycle. Watsonx.ai can be used to train, validate, tune, and deploy generative AI, foundation models, and machine learning capabilities, and build AI applications with less time and data.
$0
Pricing
Amazon Tensor FlowIBM watsonx.ai
Editions & Modules
No answers on this topic
Free Trial
$0
ML functionality (20 CUH limit /month); Inferencing (50,000 tokens / month)
Standard
$1,050
Monthly tier fee; additional usage based fees
Essentials
Contact Sales
Usage based fees
Offerings
Pricing Offerings
Amazon Tensor FlowIBM watsonx.ai
Free Trial
NoYes
Free/Freemium Version
NoYes
Premium Consulting/Integration Services
NoYes
Entry-level Setup FeeNo setup feeNo setup fee
Additional DetailsPricing for watsonx.ai includes: model inference per 1000 tokens and ML tools and ML runtimes based on capacity unit hours.
More Pricing Information
Community Pulse
Amazon Tensor FlowIBM watsonx.ai
Best Alternatives
Amazon Tensor FlowIBM watsonx.ai
Small Businesses
InterSystems IRIS
InterSystems IRIS
Score 7.9 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.9 out of 10
Medium-sized Companies
Posit
Posit
Score 9.9 out of 10
Posit
Posit
Score 9.9 out of 10
Enterprises
Posit
Posit
Score 9.9 out of 10
Posit
Posit
Score 9.9 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Amazon Tensor FlowIBM watsonx.ai
Likelihood to Recommend
9.0
(1 ratings)
8.2
(14 ratings)
Usability
-
(0 ratings)
8.0
(4 ratings)
User Testimonials
Amazon Tensor FlowIBM watsonx.ai
Likelihood to Recommend
Amazon AWS
A well-suited scenario for using AWS Tensor Flow is when having a project with a geographically dispersed team, a client overseas and large data to use for training. AWS Tensor Flow is less appropriate when working for clients in regions where it hasn't been allowed yet for use. Since smaller clients are in regions where AWS Tensor Flow hasn't been allowed for use, and those clients traditionally don't have enough hardware, this situation deters a wider use of the tool.
Read full review
IBM
I have built a code accelerator tool for one of the IBM product implementation. Although there was a heavy lifting at the start to train the model on specifics of the packaged solution library and ways of working; the efficacy of the model is astounding. Having said that, watsonx.ai is very well suited for customer service automation, healthcare data analytics, financial fraud detection, and sentiment analysis kind of projects. The Watsonx.ai look and feel is little confusing but I understand over a period of time , it will improve dramatically as well. I do feel that Watsonx.ai has certain limitations from cross-platform deployment flexibility. If an organization is deeply invested in a multi-cloud environment, Watson's integration on other cloud platforms may not be seamless comported to other AI platforms.
Read full review
Pros
Amazon AWS
  • Amazon Elastic Compute Cloud (EC2) allows resizable compute capacity in the cloud, providing the necessary elasticity to provide services for both, small and medium-sized businesses.
  • Tensor Flow allows us to train our models much faster than in our on-premise equipment.
  • Most of the pre-trained models are easy to adapt to our clients' needs.
Read full review
IBM
  • It allows specialists to apply several base models for specific subtasks in the field of NLP.
  • Gives the availability of many models developed for AI enhancement for different solutions.
  • Has incorporated functionality for data governance and security to support access to AI tools by multiple users.
Read full review
Cons
Amazon AWS
  • SageMaker isn't available in all regions. This is complicated for some clients overseas.
  • For larger instances, when using a GPU, it takes a while to talk to a customer service representative to ask for a limit increase. Given this, it's recommendable to ask in advance for a limit increase in more expensive and larger cases; otherwise, SageMaker will set the limit to zero by default.
  • Since the data has to be stored in S3 and copied to training, it doesn't allow to test and debug locally. Therefore, we have to wait a lot to check everything after every trail.
Read full review
IBM
  • Accessing the many different cloud features and tools requires spending time to understand the structure.
  • IBM offers so much but it is often hard to find what you are looking for.
  • Understanding the cost implications of using features and tools requires some effort.
Read full review
Usability
Amazon AWS
No answers on this topic
IBM
I needed some time to understand the different parts of the web UI. It was slightly overwhelming in the beginning. However, after some time, it made sense, and I like the UI now. In terms of functionality, there are many useful features that make your life easy, like jumping to a section and giving me a deployment space to deploy my models easily.
Read full review
Alternatives Considered
Amazon AWS
Microsoft Azure is better than Amazon Tensor Flow because it provides easier and pre-built capabilities such as Anomaly Detection, Recommendation, and Ranking. AWS is better than IBM Watson ML Studio because it has direct and prebuilt clustering capabilities AWS, like IBM Watson ML Studio, has powerful built-in algorithms, providing a stronger platform when comparing it with MS Azure ML Services and Google ML Engine.
Read full review
IBM
IBM watsonx.ai stands out in the ecosystem of artificial intelligence tools for its combination of flexibility, scalability and the ability to integrate multiple services in a single environment IBM watsonx.ai se destaca no ecossistema de ferramentas de inteligência artificial por sua combinação de flexibilidade, escalabilidade e capacidade de integrar múltiplos serviços em um único ambiente
Read full review
Return on Investment
Amazon AWS
  • Positive: It has allowed us to work with our overseas teams without any large hardware investing.
  • Positive: Pre-trained models significantly reduce the time to develop solutions for our clients.
  • Negative: Since it's a relatively new tool, you have to be careful about not paying for large errors while learning to use the tool.
Read full review
IBM
  • Seamless ingestion into IBM suite of products improved the end user productivity and helped users in insights-backed decision making
  • The technical interfacing with commercially off the shelf products helps in reducing the overall cycle time for implementation and upgrades.
  • The cost of the licensing could be more competitive.
Read full review
ScreenShots

IBM watsonx.ai Screenshots

Screenshot of the foundation models available in watsonx.ai. Clients have access to IBM selected open source models from Hugging Face, as well as other third-party models, and a family of IBM-developed foundation models of different sizes and architectures.Screenshot of the Prompt Lab in watsonx.ai, where AI builders can work with foundation models and build prompts using prompt engineering techniques in watsonx.ai to support a range of Natural Language Processing (NLP) type tasks.Screenshot of the Tuning Studio in watsonx.ai, where AI builders can tune foundation models with labeled data for better performance and accuracy.Screenshot of the data science toolkit in watsonx.ai where AI builders can build machine learning models automatically with model training, development, visual modeling, and synthetic data generation.