Amazon TensorFlow enables developers to quickly and easily get started with deep learning in the cloud.
N/A
IBM watsonx.ai
Score 8.7 out of 10
N/A
Watsonx.ai is part of the IBM watsonx platform that brings together new generative AI capabilities, powered by foundation models, and traditional machine learning into a studio spanning the AI lifecycle. Watsonx.ai can be used to train, validate, tune, and deploy generative AI, foundation models, and machine learning capabilities, and build AI applications with less time and data.
A well-suited scenario for using AWS Tensor Flow is when having a project with a geographically dispersed team, a client overseas and large data to use for training. AWS Tensor Flow is less appropriate when working for clients in regions where it hasn't been allowed yet for use. Since smaller clients are in regions where AWS Tensor Flow hasn't been allowed for use, and those clients traditionally don't have enough hardware, this situation deters a wider use of the tool.
I have built a code accelerator tool for one of the IBM product implementation. Although there was a heavy lifting at the start to train the model on specifics of the packaged solution library and ways of working; the efficacy of the model is astounding. Having said that, watsonx.ai is very well suited for customer service automation, healthcare data analytics, financial fraud detection, and sentiment analysis kind of projects. The Watsonx.ai look and feel is little confusing but I understand over a period of time , it will improve dramatically as well. I do feel that Watsonx.ai has certain limitations from cross-platform deployment flexibility. If an organization is deeply invested in a multi-cloud environment, Watson's integration on other cloud platforms may not be seamless comported to other AI platforms.
Amazon Elastic Compute Cloud (EC2) allows resizable compute capacity in the cloud, providing the necessary elasticity to provide services for both, small and medium-sized businesses.
Tensor Flow allows us to train our models much faster than in our on-premise equipment.
Most of the pre-trained models are easy to adapt to our clients' needs.
SageMaker isn't available in all regions. This is complicated for some clients overseas.
For larger instances, when using a GPU, it takes a while to talk to a customer service representative to ask for a limit increase. Given this, it's recommendable to ask in advance for a limit increase in more expensive and larger cases; otherwise, SageMaker will set the limit to zero by default.
Since the data has to be stored in S3 and copied to training, it doesn't allow to test and debug locally. Therefore, we have to wait a lot to check everything after every trail.
I needed some time to understand the different parts of the web UI. It was slightly overwhelming in the beginning. However, after some time, it made sense, and I like the UI now. In terms of functionality, there are many useful features that make your life easy, like jumping to a section and giving me a deployment space to deploy my models easily.
Microsoft Azure is better than Amazon Tensor Flow because it provides easier and pre-built capabilities such as Anomaly Detection, Recommendation, and Ranking. AWS is better than IBM Watson ML Studio because it has direct and prebuilt clustering capabilities AWS, like IBM Watson ML Studio, has powerful built-in algorithms, providing a stronger platform when comparing it with MS Azure ML Services and Google ML Engine.
IBM watsonx.ai stands out in the ecosystem of artificial intelligence tools for its combination of flexibility, scalability and the ability to integrate multiple services in a single environment IBM watsonx.ai se destaca no ecossistema de ferramentas de inteligência artificial por sua combinação de flexibilidade, escalabilidade e capacidade de integrar múltiplos serviços em um único ambiente