Apache Drill vs. Apache Sqoop

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Drill
Score 8.1 out of 10
N/A
Apache Drill is a schema-free query engine for use with NoSQL or Hadoop data or file storage systems and databases.N/A
Apache Sqoop
Score 8.8 out of 10
N/A
Apache Sqoop is a tool for use with Hadoop, used to transfer data between Apache Hadoop and other, structured data stores.N/A
Pricing
Apache DrillApache Sqoop
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache DrillApache Sqoop
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details——
More Pricing Information
Best Alternatives
Apache DrillApache Sqoop
Small Businesses
IBM Cloudant
IBM Cloudant
Score 8.0 out of 10

No answers on this topic

Medium-sized Companies
IBM Cloudant
IBM Cloudant
Score 8.0 out of 10
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
Enterprises
IBM Cloudant
IBM Cloudant
Score 8.0 out of 10
IBM Analytics Engine
IBM Analytics Engine
Score 8.6 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache DrillApache Sqoop
Likelihood to Recommend
8.0
(1 ratings)
9.0
(1 ratings)
Likelihood to Renew
7.0
(1 ratings)
-
(0 ratings)
User Testimonials
Apache DrillApache Sqoop
Likelihood to Recommend
Apache
if you're doing joins from hBASE, hdfs, cassandra and redis, then this works. Using it as a be all end all does not suit it. This is not your straight forward magic software that works for all scenarios. One needs to determine the use case to see if Apache Drill fits the needs. 3/4 of the time, usually it does.
Read full review
Apache
Sqoop is great for sending data between a JDBC compliant database and a Hadoop environment. Sqoop is built for those who need a few simple CLI options to import a selection of database tables into Hadoop, do large dataset analysis that could not commonly be done with that database system due to resource constraints, then export the results back into that database (or another). Sqoop falls short when there needs to be some extra, customized processing between database extract, and Hadoop loading, in which case Apache Spark's JDBC utilities might be preferred
Read full review
Pros
Apache
  • queries multiple data sources with ease.
  • supports sql, so non technical users who know sql, can run query sets
  • 3rd party tools, like tableau, zoom data and looker were able to connect with no issues
Read full review
Apache
  • Provides generalized JDBC extensions to migrate data between most database systems
  • Generates Java classes upon reading database records for use in other code utilizing Hadoop's client libraries
  • Allows for both import and export features
Read full review
Cons
Apache
  • deployment. Not as easy
  • configuration isn't as straight forward, especially with the documentation
  • Garbage collection could be improved upon
Read full review
Apache
  • Sqoop2 development seems to have stalled. I have set it up outside of a Cloudera CDH installation, and I actually prefer it's "Sqoop Server" model better than just the CLI client version that is Sqoop1. This works especially well in a microservices environment, where there would be only one place to maintain the JDBC drivers to use for Sqoop.
Read full review
Likelihood to Renew
Apache
if Presto comes up with more support (ie hbase, s3), then its strongly possible that we'll move from apache drill to prestoDB. However, Apache drill needs more configuration ease, especially when it comes to garbage collection tuning. If apache drill could support also sparkSQL and Flume, then it does change drill into being something more valuable than prestoDB
Read full review
Apache
No answers on this topic
Alternatives Considered
Apache
compared to presto, has more support than prestodb. Impala has limitations to what drill can support apache phoenix only supports for hbase. no support for cassandra. Apache drill was chosen, because of the multiple data stores that it supports htat the other 3 do not support. Presto does not support hbase as of yet. Impala does not support query to cassandra
Read full review
Apache
  • Sqoop comes preinstalled on the major Hadoop vendor distributions as the recommended product to import data from relational databases. The ability to extend it with additional JDBC drivers makes it very flexible for the environment it is installed within.
  • Spark also has a useful JDBC reader, and can manipulate data in more ways than Sqoop, and also upload to many other systems than just Hadoop.
  • Kafka Connect JDBC is more for streaming database updates using tools such as Oracle GoldenGate or Debezium.
  • Streamsets and Apache NiFi both provide a more "flow based programming" approach to graphically laying out connectors between various systems, including JDBC and Hadoop.
Read full review
Return on Investment
Apache
  • Configuration has taken some serious time out.
  • Garbage collection tuning. is a constant hassle. time and effort applied to it, vs dedicating resources elsewhere.
  • w/ sql support, reduces the need of devs to generate the resultset for analysts, when they can run queries themselves (if they know sql).
Read full review
Apache
  • When combined with Cloudera's HUE, it can enable non-technical users to easily import relational data into Hadoop.
  • Being able to manipulate large datasets in Hadoop, and them load them into a type of "materialized view" in an external database system has yielded great insights into the Hadoop datalake without continuously running large batch jobs.
  • Sqoop isn't very user-friendly for those uncomfortable with a CLI.
Read full review
ScreenShots