Sqoop is great for sending data between a JDBC compliant database and a Hadoop environment. Sqoop is built for those who need a few simple CLI options to import a selection of database tables into Hadoop, do large dataset analysis that could not commonly be done with that database system due to resource constraints, then export the results back into that database (or another). Sqoop falls short when there needs to be some extra, customized processing between database extract, and Hadoop loading, in which case Apache Spark's JDBC utilities might be preferred
This tool fits all kinds of organizations and helps to integrate data between many applications. We can use this tool as data integration is a key feature for all organizations. It is also available in the cloud, which makes the integration more seamless. The firm can opt for the required tools when there are no data integration needs.
Talend Data Integration allows us to quickly build data integrations without a tremendous amount of custom coding (some Java and JavaScript knowledge is still required).
I like the UI and it's very intuitive. Jobs are visual, allowing the team members to see the flow of the data, without having to read through the Java code that is generated.
Sqoop2 development seems to have stalled. I have set it up outside of a Cloudera CDH installation, and I actually prefer it's "Sqoop Server" model better than just the CLI client version that is Sqoop1. This works especially well in a microservices environment, where there would be only one place to maintain the JDBC drivers to use for Sqoop.
We use Talend Data Integration day in and day out. It is the best and easiest tool to jump on to and use. We can build a basic integration super-fast. We could build basic integrations as fast as within the hour. It is also easy to build transformations and use Java to perform some operations.
Good support, specially when it relates to PROD environment. The support team has access to the product development team. Things are internally escalated to development team if there is a bug encountered. This helps the customer to get quick fix or patch designed for problem exceptions. I have also seen support showing their willingness to help develop custom connector for a newly available cloud based big data solution
Sqoop comes preinstalled on the major Hadoop vendor distributions as the recommended product to import data from relational databases. The ability to extend it with additional JDBC drivers makes it very flexible for the environment it is installed within.
Spark also has a useful JDBC reader, and can manipulate data in more ways than Sqoop, and also upload to many other systems than just Hadoop.
Kafka Connect JDBC is more for streaming database updates using tools such as Oracle GoldenGate or Debezium.
Streamsets and Apache NiFi both provide a more "flow based programming" approach to graphically laying out connectors between various systems, including JDBC and Hadoop.
In comparison with the other ETLs I used, Talend is more flexible than Data Services (where you cannot create complex commands). It is similar to Datastage speaking about commands and interfaces. It is more user-friendly than ODI, which has a metadata point of view on its own, while Talend is more classic. It has both on-prem and cloud approaches, while Matillion is only cloud-based.
When combined with Cloudera's HUE, it can enable non-technical users to easily import relational data into Hadoop.
Being able to manipulate large datasets in Hadoop, and them load them into a type of "materialized view" in an external database system has yielded great insights into the Hadoop datalake without continuously running large batch jobs.
Sqoop isn't very user-friendly for those uncomfortable with a CLI.
It’s only been a positive RoI with Talend given we’ve interfaced large datasets between critical on-Prem and cloud-native apps to efficiently run our business operations.