DataStax Enterprise (DSE) is the scale-out, cloud-native NoSQL database built on Apache Cassandra. DSE is Developer Ready providing developers the freedom of choice of REST, GraphQL, CQL and JSON/Document APIs.
N/A
SingleStore
Score 8.4 out of 10
N/A
SingleStore aims to enable organizations to scale from one to one million customers, handling SQL, JSON, full text and vector workloads in one unified platform.
Real-time transaction processing (both reads and writes) is where DataStax Enterprise shines. It's very fast with linear scalability should more resources be needed. Additional nodes are added very easily. DataStax Enterprise on its own (without Solr or Spark enabled) isn't well suited for long complicated reports. The data model doesn't support joining multiple tables together which is common in BI reporting.
Good for Applications needing instant insights on large, streaming datasets. Applications processing continuous data streams with low latency. When a multi-cloud, high-availability database is required When NOT to Use Small-scale applications with limited budgets Projects that do not require real-time analytics or distributed scaling Teams without experience in distributed databases and HTAP architectures.
Datastax Cassandra provides high availability and good performance for a database. It is built on top of open source Apache Cassandra so you can always somewhat understand the internal functioning and why.
Datastax Cassandra is fairly simple to start using, you can install/setup your cluster and be productive in 1 day.
Datastax Cassandra provides a lot of good detailed documentation, and when starting, the detailed free videos on the Datastax site and documentation are very helpful.
Datastax Enterprise Edition of Cassandra provides more tools, good support, and quick response SLA for enterprise business support.
It does not release a patch to have back porting; it just releases a new version and stops support; it's difficult to keep up to that pace.
Support engineers lack expertise, but they seem to be improving organically.
Lacks enterprise CDC capability: Change data capture (CDC) is a process that tracks and records changes made to data in a database and then delivers those changes to other systems in real time.
For enterprise-level backup & restore capability, we had to implement our model via Velero snapshot backup.
There is a bit of a learning curve and tasks that are simple in traditional RDBMS systems can be complicated with DataStax Enterprise but once you get the hang of denormalizing data and getting the data model correct DataStax Enterprise is very usable. Usability from the developer's standpoint is very simple - the complication is on the architecture side with the data model.
[Until it is] supported on AWS ECS containers, I will reserve a higher rating for SingleStore. Right now it works well on EC2 and serves our current purpose, [but] would look forward to seeing SingleStore respond to our urge of feature in a shorter time period with high quality and security.
SingleStore excels in real-time analytics and low-latency transactions, making it ideal for operational analytics and mixed workloads. Snowflake shines in batch analytics and data warehousing with strong scalability for large datasets. SingleStore offers faster data ingestion and query execution for real-time use cases, while Snowflake is better for complex analytical queries on historical data.
DataStax has the best community. They have instant customer support to solve problems and are knowledgeable of the problems faced by the customer. The documentation is pretty top-notch.
The support deep dives into our most complexed queries and bizarre issues that sometimes only we get comparing to other clients. Our special workload (thousands of Kafka pipelines + high concurrency of queries). The response match to the priority of the request, P1 gets immediate return call. Missing features are treated, they become a client request and being added to the roadmap after internal consideration on all client needs and priority. Bugs are patched quite fast, depends on the impact and feasible temporary workarounds. There is no issue that we haven't got a proper answer, resolution or reasoning
We allowed 2-3 months for a thorough evaluation. We saw pretty quickly that we were likely to pick SingleStore, so we ported some of our stored procedures to SingleStore in order to take a deeper look. Two SingleStore people worked closely with us to ensure that we did not have any blocking problems. It all went remarkably smoothly.
DataStax Enterprise offered best-in-class write performance and scalability. The customer support team was very helpful in the adoption of new technology.
Greenplum is good in handling very large amount of data. Concurrency in Greenplum was a major problem. Features available in SingleStore like Pipelines and in memory features are not available in Greenplum. Gemfire was not scaling well like SingleStore. Support of both Greenplum and Gemfire was not good. Product team did not help us much like the ones in SingleStore who helped us getting started on our first cluster very fast.
As the overall performance and functionality were expanded, we are able to deliver our data much faster than before, which increases the demand for data.
Metadata is available in the platform by default, like metadata on the pipelines. Also, the information schema has lots of metadata, making it easy to load our assets to the data catalog.